173 resultados para computer software


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The real-time refinement calculus is a formal method for the systematic derivation of real-time programs from real-time specifications in a style similar to the non-real-time refinement calculi of Back and Morgan. In this paper we extend the real-time refinement calculus with procedures and provide refinement rules for refining real-time specifications to procedure calls. A real-time specification can include constraints on, not only what outputs are produced, but also when they are produced. The derived programs can also include time constraints oil when certain points in the program must be reached; these are expressed in the form of deadline commands. Such programs are machine independent. An important consequence of the approach taken is that, not only are the specifications machine independent, but the whole refinement process is machine independent. To implement the machine independent code on a target machine one has a separate task of showing that the compiled machine code will reach all its deadlines before they expire. For real-time programs, externally observable input and output variables are essential. These differ from local variables in that their values are observable over the duration of the execution of the program. Hence procedures require input and output parameter mechanisms that are references to the actual parameters so that changes to external inputs are observable within the procedure and changes to output parameters are externally observable. In addition, we allow value and result parameters. These may be auxiliary parameters, which are used for reasoning about the correctness of real-time programs as well as in the expression of timing deadlines, but do not lead to any code being generated for them by a compiler. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dynamic binary translation is the process of translating, modifying and rewriting executable (binary) code from one machine to another at run-time. This process of low-level re-engineering consists of a reverse engineering phase followed by a forward engineering phase. UQDBT, the University of Queensland Dynamic Binary Translator, is a machine-adaptable translator. Adaptability is provided through the specification of properties of machines and their instruction sets, allowing the support of different pairs of source and target machines. Most binary translators are closely bound to a pair of machines, making analyses and code hard to reuse. Like most virtual machines, UQDBT performs generic optimizations that apply to a variety of machines. Frequently executed code is translated to native code by the use of edge weight instrumentation, which makes UQDBT converge more quickly than systems based on instruction speculation. In this paper, we describe the architecture and run-time feedback optimizations performed by the UQDBT system, and provide results obtained in the x86 and SPARC® platforms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-level language program compilation strategies can be proven correct by modelling the process as a series of refinement steps from source code to a machine-level description. We show how this can be done for programs containing recursively-defined procedures in the well-established predicate transformer semantics for refinement. To do so the formalism is extended with an abstraction of the way stack frames are created at run time for procedure parameters and variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider how refinements between state-based specifications (e.g., written in Z) can be checked by use of a model checker. Specifically, we are interested in the verification of downward and upward simulations which are the standard approach to verifying refinements in state-based notations. We show how downward and upward simulations can be checked using existing temporal logic model checkers. In particular, we show how the branching time temporal logic CTL can be used to encode the standard simulation conditions. We do this for both a blocking, or guarded, interpretation of operations (often used when specifying reactive systems) as well as the more common non-blocking interpretation of operations used in many state-based specification languages (for modelling sequential systems). The approach is general enough to use with any state-based specification language, and we illustrate how refinements between Z specifications can be checked using the SAL CTL model checker using a small example.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Business environments have become exceedingly dynamic and competitive in recent times. This dynamism is manifested in the form of changing process requirements and time constraints. Workflow technology is currently one of the most promising fields of research in business process automation. However, workflow systems to date do not provide the flexibility necessary to support the dynamic nature of business processes. In this paper we primarily discuss the issues and challenges related to managing change and time in workflows representing dynamic business processes. We also present an analysis of workflow modifications and provide feasibility considerations for the automation of this process.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador: