147 resultados para beta-delayed neutron emission
Resumo:
Several reports have suggested an interaction between the erythropoietin receptor (EpoR) and the shared signaling subunit (hbeta(c)) of the human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors, although the functional consequences of this interaction are unclear. We previously showed that in vivo expression of constitutively active extracellular (EC) mutants of hbeta(c) induces erythrocytosis and Epo independence of erythroid colony-forming units (CFU-E). This occurs despite an apparent requirement of these mutants for the GM-CSF receptor alpha-subunit (GMRalpha), which is not expressed in CFU-E. Here, we show that coexpression of hbeta(c) EC mutants and EpoR in BaF-B03 cells, which lack GMRalpha, results in factor-independent proliferation and JAK2 activation. Mutant receptors that cannot activate JAK2 fail to produce a functional interaction. As there is no detectable phosphorylation of hbeta(c). on intracellular tyrosine residues, EpoR displays constitutive tyrosine phosphorylation. These observations suggest that JAK2 activation mediates cross-talk between EC mutants of hbeta(c) and EpoR. The implications of these data are discussed as are our findings that activated hbeta(c) mutants can functionally interact with certain other cytokine receptors.
Resumo:
It is becoming widely recognized that extending the larval period of marine invertebrates, especially of species with non-feeding larvae, can affect post-larval performance. As these carry-over effects are presumed to be caused by the depletion of larval energy reserves, we predicted that the level of larval activity would also affect post-larval performance. This prediction was tested with the cosmopolitan colonial ascidian Diplosoma listerianum in field experiments in southern Australia. Diplosoma larvae, brooded in the parent colony, are competent to settle immediately after spawning, and they remain competent to metamorphose for > 15 h. Some larvae were induced to metamorphose 0 to 6 h after release, whilst others were induced to swim actively by alternating light and dark periods for up to 3 h prior to metamorphosis. Juvenile colonies were then transplanted to a subtidal field site in Port Phillip Bay and left to grow for up to 3 wk. Extending the larval period and increasing the amount of swimming both produced carry-over effects on post-larval performance. Colonies survived at different rates among experiments, but larval experience did not affect survival rates. Delays in metamorphosis and increased swimming activity did, however, reduce colony growth rates dramatically, resulting in 50% fewer zooids per colony. Moreover, such colonies produced initial zooids with smaller feeding structures, with the width of branchial baskets reduced by 10 to 15%. These differences in branchial basket size persisted and were still apparent in newly budded zooids 3 wk after metamorphosis. Our results suggest that, for D. listerianum, larval maintenance, swimming, and metamorphosis all use energy from a common pool, and increases in the allocation to maintenance or swimming come at the expense of post-larval performance.
Resumo:
The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.