79 resultados para auditory EEG
Resumo:
In the non-color-word Stroop task, university students' response latencies were longer for low-frequency than for higher frequency target words. Visual identity primes facilitated color naming in groups reading the prime silently or processing it semantically (Experiment 1) but did not when participants generated a rhyme of the prime (Experiment 3). With auditory identity primes, generating an associate or a rhyme of the prime produced interference (Experiments 2 and 3). Color-naming latencies were longer for nonwords than for words (Experiment 4). There was a small long-term repetition benefit in color naming for low-frequency words that had been presented in the lexical decision task (Experiment 5). Facilitation of word recognition speeds color naming except when phonological activation of the base word increases response competition.
Resumo:
Restricted cochlear lesions in adult animals result in plastic changes in the representation of the lesioned cochlea, and thus in the frequency map, in the contralateral auditory cortex and thalamus. To examine the contribution of subthalamic changes to this reorganization, the effects of unilateral mechanical cochlear lesions on the frequency organization of the central nucleus of the inferior colliculus (ICC) were examined in adult cats. Lesions typically resulted in a broad high-frequency hearing loss extending from a frequency in the range 15-22 kHz. After recovery periods of 2.5-18 months, the frequency organization of ICC contralateral to the lesioned cochlea was determined separately for the onset and late components of multiunit responses to tone-burst stimuli. For the late response component in all but one penetration through the ICC, and for the onset response component in more than half of the penetrations, changes in frequency organization in the lesion projection zone were explicable as the residue of prelesion responses. In half of the penetrations exhibiting nonresidue type changes in onset-response frequency organization, the changes appeared to reflect the unmasking of normally inhibited inputs. In the other half it was unclear whether the changes reflected unmasking or a dynamic process of reorganization. Thus, most of the observed changes were explicable as passive consequences of the lesion, and there was limited evidence for plasticity in the ICC. The implications of the data with respect to the primary locus of the changes and to the manner in which they contribute to thalamocortical reorganization are considered. (C) 2003 Wiley-Liss, Inc.
Resumo:
Cortical activity associated with voluntary movement is shifted from medial to lateral premotor areas in Parkinson's disease. This occurs bilaterally, even for unilateral movements. We have used both EEG and MEG to further investigate medial and lateral premotor activity in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. The CNV, recorded from 21 scalp positions in a Go/NoGo task, was maximal over central medial regions in control subjects. For hemi-Parkinson's disease subjects, activity was shifted more frontally, reduced in the midline and lateralised towards the side of greatest basal ganglia impairment. With 143 channel whole-scalp magneto encephalography (MEG) we are further examining asymmetries in supplementary motor/premotor cortical activity prior to self-paced voluntary movement. In preliminary results, one hemi-Parkinson's disease patient with predominantly left-side symptoms showed strong medial activity consistent with a dominant source in the left supplementary motor area (SMA). Three patients showed little medial activity, but early bilateral sources within lateral premotor cortex. Results suggest greater involvement of lateral premotor rather than the SMA prior to movement in Parkinson's disease and provide evidence for asymmetric function of the SMA in hemi- Parkinson's disease, with reduced activity on the side of greatest basal ganglia deficit.
Resumo:
Background and Objectives: A number of familial temporal lobe epilepsies (TLE) have been recently recognized. Mutations in LGI1 (leucine-rich, glioma-inactivated 1 gene) have been found in a few families with the syndrome of autosomal dominant partial epilepsy with auditory features (ADPEAF). The authors aimed to determine the spectrum of TLE phenotypes with LGI1 mutations, to study the frequency of mutations in ADPEAF, and to examine the role of LGI1 paralogs in ADPEAF without LGI1 mutations. Methods: The authors performed a clinical and molecular analysis on 75 pedigrees comprising 54 with a variety of familial epilepsies associated with TLE and 21 sporadic TLE cases. All were studied for mutations in LGI1. ADPEAF families negative for LGI1 mutations were screened for mutations in LGI2, LGI3, and LGI4. Results: Four families had ADPEAF, 22 had mesial TLE, 11 had TLE with febrile seizures, two had TLE with developmental abnormalities, and 15 had various other TLE syndromes. LGI1 mutations were found in two of four ADPEAF families, but in none of the other 50 families nor in the 21 individuals with sporadic TLE. The mutations were novel missense mutations in exons 1 (c. 124T --> G; C42G) and 8 (c. 1418C --> T; S473L). No mutations in LGI2, LGI3, or LGI4 were found in the other two ADPEAF families. Conclusion: In TLE, mutations in LGI1 are specific for ADPEAF but do not occur in all families. ADPEAF is genetically heterogeneous, but mutations in LGI2, LGI3, or LGI4 did not account for families without LGI1 mutations.
Resumo:
Three experiments explored the effectiveness of continuous auditory displays, or sonifications, for conveying information about a simulated anesthetized patient's respiration. Experiment 1 established an effective respiratory sonification. Experiment 2 showed an effect of expertise in the use of respiratory sonification and revealed that some apparent differences in sonification effectiveness could be accounted for by response bias. Experiment 3 showed that sonification helps anesthesiologists to maintain high levels of awareness of the simulated patient's state while performing other tasks more effectively than when relying upon visual monitoring of the simulated patient state. Overall, sonification of patient physiology beyond traditional pulse oximetry appears to be a viable and useful adjunct to visual monitors. Actual and potential applications of this research include monitoring in a wide variety of busy critical care contexts.
Resumo:
The supplementary motor area (SMA) is thought to play in important role in the preparation and organisation of voluntary movement. It has long been known that cortical activity begins to increase up to 2 s prior to voluntary self-initiated movement. This increasing premovement activity measured in EEG is known as the Bereitschaftspotential or readiness potential. Modern functional brain imaging methods, using event-related and time-resolved functional MRI techniques, are beginning to reveal the role of the SMA, and in particular the more anterior pre-SMA, in premovement activity associated with the readiness for action. In this paper we review recent studies using event-related time-resolved fMRI methods to examine the time-course of activation changes within the SMA throughout the preparation, readiness and execution of action. These studies suggest that the preSMA plays a common role in encoding or representing actions prior to our own voluntary self-initiated movements, during motor imagery, and from the observation of others' actions. We suggest that the pre-SMA generates and encodes motor representations which are then maintained in readiness for action. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Guinea pigs were exposed to pure tones of 10 kHz at intensities between 98 and 115 dB SPL for 5-30 min, to produce varying degrees of acoustic trauma. Changes in auditory thresholds were measured electrophysiologically, and the animals were immediately fixed for scanning electron microscopy. Correlation between morphological changes to the hair bundle and losses in threshold, showed that with the smallest degrees of trauma (98 dB SPL for 15 min, mean maximum threshold loss of 22 dB), damage was confined to a small stretch of inner hair cells (IHC), with only subtle changes to the stereocilia of the outer hair cells (OHC). At exposure intensities greater than 102 dB SPL (duration: 15 min) the IHC stereocilia in the centre of the lesion were always substantially disarrayed. Substantial damage to the OHC bundles was seen only with exposures above 110 dB SPL(duration: greater than or equal to 5 min), producing threshold losses of 50 dB or more. Tip links were lost only where the stereocilia were disarrayed. It is concluded that the tip links are not the most vulnerable components of the cochlear hair cell, but that relatively low levels of acoustic stimulation can cause significant damage to the stereociliary bundle of the IHCs.
Resumo:
The P3(00) event-related potential (ERP) component is widely used as a measure of cognitive functioning and provides a sensitive electrophysiological index of the attentional and working memory demands of a task. This study investigated what proportion of the variance in the amplitude and latency of the P3, elicited in a delayed response working memory task, could be attributed to genetic factors. In 335 adolescent twin pairs and 48 siblings, the amplitude and latency of the P3 were examined at frontal, central, and parietal sites. Additive genetic factors accounted for 48% to 61% of the variance in P3 amplitude. Approximately one-third of the genetic variation at frontal sites was mediated by a common genetic factor that also influenced the genetic variation at parietal and central sites. Familial resemblance in P3 latency was due to genetic influence that accounted for 44% to 50% of the variance. Genetic covariance in P3 latency across sites was substantial, with a large part of the variance found at parietal, central, and frontal sites attributed to a common genetic factor. The findings provide further evidence that the P3 is a promising phenotype of neural activity of the brain and has the potential to be used in linkage and association analysis in the search for quantitative trait loci (QTLs) influencing cognition.
Resumo:
Information processing accounts propose that autonomic orienting reflects the amount of resources allocated to process a stimulus. However, secondary task reaction time (RT), a supposed measure of processing resources, has shown a dissociation from autonomic orienting. The present study tested the hypothesis that secondary task RT reflects a serial processing mechanism. Participants (N = 24) were presented with circle and ellipse shapes and asked to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of a second shape (task-irrelevant). Concurrent with the counting task, participants performed a secondary RT task to an auditory probe presented at either a high or low intensity and at two different probe positions following shape onset (50 and 300 ms). Electrodermal orienting was larger during task-relevant shapes than during task-irrelevant shapes, but secondary task RT to the high-intensity probe was slower during the latter. In addition, an underadditive interaction between probe stimulus intensity and probe position was found in secondary RT. The findings are consistent with a serial processing model of secondary RT and suggest that the notion of processing stages should be incorporated into current information-processing models of autonomic orienting.
Resumo:
Goal-directed, coordinated movements in humans emerge from a variety of constraints that range from 'high-level' cognitive strategies based oil perception of the task to 'low-level' neuromuscular-skeletal factors such as differential contributions to coordination from flexor and extensor muscles. There has been a tendency in the literature to dichotomize these sources of constraint, favouring one or the other rather than recognizing and understanding their mutual interplay. In this experiment, subjects were required to coordinate rhythmic flexion and extension movements with an auditory metronome, the rate of which was systematically increased. When subjects started in extension on the beat of the metronome, there was a small tendency to switch to flexion at higher rates, but not vice versa. When subjects: were asked to contact a physical stop, the location of which was either coincident with or counterphase to the auditor) stimulus, two effects occurred. When haptic contact was coincident with sound, coordination was stabilized for both flexion and extension. When haptic contact was counterphase to the metronome, coordination was actually destabilized, with transitions occurring from both extension to flexion on the beat and from flexion to extension on the beat. These results reveal the complementary nature of strategic and neuromuscular factors in sensorimotor coordination. They also suggest the presence of a multimodal neural integration process-which is parametrizable by rate and context - in which intentional movement, touch and sound are bound into a single, coherent unit.
Resumo:
The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.
Resumo:
The aim of the present study was to investigate the effect of high-pass filtering on TEOAE obtained from 2-month-old infants as a function of filter cut-off frequency, activity states and pass/fail status of infants. Two experiments were performed. In Experiment 1, 100 2-month-old infants (200 ears) in five activity states (asleep, awake but peaceful, sucking a pacifier, feeding, restless) were tested by use of TEOAE technology. Five different filter conditions were applied to the TEOAE responses post hoc. The filter conditions were set at 781 Hz (default setting), 1.0, 1.2, 1.4 and 1.6 kHz. Results from this experiment showed that TEOAE parameters, such as whole-wave reproducibility (WR) and signal-to-noise ratio (SNR) at 0.8 kHz and 1.6 kHz, changed as a function of the cut-off frequency. The findings suggest that the 1.6 kHz and 1.2 kHz filter conditions are optimal for WR and SNR pass/fail criteria, respectively. Although all infant recordings appeared to benefit from the filtering, infants in the noisy states seemed to benefit the most. In Experiment 2, the high-pass filtering technique was applied to 23 infants (35 ears) who apparently failed the TEOAE tests on initial screening but were subsequently awarded a pass status based on the results from a follow-up auditory brainstem response (ABR) assessment. The findings showed a significant decrease in noise contamination of the TEOAE with a corresponding significant increase in WR. With high-pass filtering at 1.6 kHz, 21/35 ears could be reclassified into the pass category.
Resumo:
Objective: To determine the risk of conductive hearing loss in preterm infants with bronchopulmonary dysplasia (BPD) and preterm controls. Methodology: The study population consisted of 78 infants with BPD of 26-33 weeks gestation and 78 controls of similar gestational age matched for broad-based birthweight categories. An auditory brainstem response (ABR) audiology was performed shortly before hospital discharge. Visual reinforcement orientation audiometry (VROA) and impedance audiometry were performed at 8-12 months corrected for prematurity. Infants with persistent audiological abnormalities were referred for evaluation to paediatric ENT surgeons. Results: Infants with BPD had a significantly higher rate of ABR abnormalities (BPD: 22%, controls: 9%; P = 0.028). On VROA and impedance audiometry, the infants with BPD also had a higher rate of persistent abnormalities. Following ENT assessment, 22.1% of infants with BPD and 7.7% of controls had persistent conductive dysfunction requiring myringotomy and grommet tube insertion (P = 0.03). Most of these infants had normal ABR audiometry at hospital discharge. Conclusions: Preterm infants with BPD are at high risk of persistent conductive hearing loss late in the first year of life compared to controls. An ABR audiology conducted at the time of hospital discharge does not predict accurately later conductive hearing problems. Infants with BPD should have routine audiological evaluation toward the end of the first year of life.
Resumo:
An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.
Resumo:
The processing of lexical ambiguity in context was investigated in eight individuals with schizophrenia and a matched control group. Participants made speeded lexical decisions on the third word in auditory word triplets representing concordant (coin-bank-money), discordant (river-bank-money). neutral (day-bank-money), and unrelated (river-day-money) conditions. When the interstimulus interval (ISI) between the words was 100 ms. individuals with schizophrenia demonstrated priming consistent with selective. context-based lexical activation. At 1250 ms ISI a pattern of nonselective meaning facilitation was obtained. These results suggest an attentional breakdown in the sustained inhibition of meanings on the basis of lexical context. (C) 2002 Elsevier Science (USA).