247 resultados para Two-qubit photon beam
Resumo:
Detailed view of cast iron brackets connecting beams and posts.
Resumo:
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and M. galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; M. edulis and M. trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.
Resumo:
We propose a review of recent developments on entanglement and nonclassical effects in collective two-atom systems and present a uniform physical picture of the many predicted phenomena. The collective effects have brought into sharp focus some of the most basic features of quantum theory, such as nonclassical states of light and entangled states of multiatom systems. The entangled states are linear superpositions of the internal states of the system which cannot be separated into product states of the individual atoms. This property is recognized as entirely quantum-mechanical effect and have played a crucial role in many discussions of the nature of quantum measurements and, in particular, in the developments of quantum communications. Much of the fundamental interest in entangled states is connected with its practical application ranging from quantum computation, information processing, cryptography, and interferometry to atomic spectroscopy.
Resumo:
The quantitative description of the quantum entanglement between a qubit and its environment is considered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is calculated as a function of α, the strength of the ohmic coupling to the environment, and ɛ, the level asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo model. For ɛ=0, the entanglement increases monotonically with α, until it becomes maximal for α→1-. For fixed ɛ>0, the entanglement is a maximum as a function of α for a value, α=αM
Resumo:
The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.
Resumo:
A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offers a remarkable range of possibilities for atom manipulation on the submicron scale. These include controlled and coherent splitting of the wave function as well as cooling, trapping, and guiding. In particular, we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.
Resumo:
Using spontaneous parametric down-conversion, we produce polarization-entangled states of two photons and characterize them using two-photon tomography to measure the density matrix. A controllable decoherence is imposed on the states by passing the photons through thick, adjustable birefringent elements. When the system is subject to collective decoherence, one particular entangled state is seen to be decoherence-free, as predicted by theory. Such decoherence-free systems may have an important role for the future of quantum computation and information processing.
Resumo:
The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions.
Resumo:
Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.
Resumo:
Second part (and conclusion) of a paper on dispersed microspores from Culm (Carboniferous) localities, mainly in Billefjorden sandstones. Macroscopic lithologic data for samples are appended. "The present study lends considerable support to the view . . . that terrestrial sequences of lower Carboniferous age may be subdivided precisely on the exclusive basis of their microspore content.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.