92 resultados para Trp-containing peptides
Resumo:
Objective. Infiltration of rheumatoid arthritis (RA) synovial tissue (ST) by differentiated dendritic cells (DC) is a consistent feature in patients with active disease. However, mononuclear cells (MNC), including DC, may be nonspecifically chemoattracted to inflammatory sites regardless of etiology, Therefore, to evaluate the specificity of ST infiltration by differentiated DC, synovial biopsies from patients with RA, spondylarthropathy (SpA), osteoarthritis (OA), and gout were examined. Methods. Formalin-fixed ST sections were analyzed by double immunohistochemical staining for vascularity and infiltration by differentiated DC, lymphocytes, and macrophages. Results, DC containing nuclear RelB were found in perivascular MNC aggregates from patients with all arthritides studied. Infiltration by differentiated DC was similar in RA and SpA ST, but reduced in OA ST. Differentiated DC were always observed in close association with lymphocytes, and the correlation between these variables suggested that the infiltration of inflammatory sites by DC and lymphocytes was associated. Conclusion, Perivascular infiltration by DC, lymphocytes, and macrophages is nonspecifically related to inflammation, but signals present in RA and SpA ST lead to more intense cellular infiltration and accumulation.
Resumo:
The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Methyl tetra-O-allyl, and tetra-O-[2-(tetrahydro-2H-pyranyl)oxy.-3-oxapentyl glucosides, and tetra-O-(cyanoethyl)galactosyl azide were converted into derivatives containing linkers with terminal carboxylic acid functionalities at the anomeric position and bearing four arms with phthaloyl- or BOC-protected terminal amino groups. These molecules were suitable for use in solid-phase peptide synthesis and for the preparation of dendrimers, containing multiple copies of peptides. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
1. Recent findings have suggested a significant involvement of the immune system in the control of pain. Immune cells contain opioid peptides that are released within inflamed tissue and act at opioid receptors on peripheral sensory nerve endings. It is also apparent that different types of lymphocytes contain P-endorphin, memory T cells containing more beta -endorphin than naive cells. 2. These findings highlight an integral link between immune cell migration and inflammatory pain, The present review highlights immune system involvement in the site-directed control of inflammatory pain. 3. Full-length mRNA transcripts for opioid precursor proteins are expressed in immune cells. Increased expression of pro-opiomelanocortin mRNA and beta -endorphin has been demonstrated in stimulated lymphocytes and lymphocytes from animals with inflammation. 4. Cytokines and corticotropin-releasing factor (CRF) release opioids from immune cells, Potent peripheral analgesia due to direct injection of CRF can be blocked by antagonists to CRF, antibodies to opioid peptides, antisense to CRF and opioid receptor-specific antagonists. The release of opioid peptides from lymphocytes is calcium dependent and opioid receptor specific. Furthermore, endogenous sources of opioid peptides produce potent analgesia when implanted into the spinal cord. 5. Activated immune cells migrate directly to inflamed tissue using cell adhesion molecules to adhere to the epithelial surface of the vasculature in inflamed tissue. Lymphocytes that have been activated can express opioid peptides, Memory type T cells that contain opioid peptides are present within inflamed tissue; naive cells are not present in inflamed tissue and do not contain opioid peptides, Inhibiting the migration of memory type T cells into inflamed tissue by blocking selectins results in reduced numbers of beta -endorphin containing cells, a reduced quantity of beta -endorphin in inflamed paws and reduced stress- and CRF-induced peripheral analgesia. 6. Immunosuppression is associated with increased pain in patients. Moreover, immunosuppression results in decreased lymphocyte numbers as well as decreased analgesia in animal models.
Resumo:
Injection of particulate hepatitis B virus surface antigen (HBsAg) in mice leads to the induction of a HBsAg-specific class-I-restricted cytotoxic T lymphocyte (CTL) response. It is proposed that any protein internal to HBsAg will also be able to elicit a specific CTL response. In this study, several carboxy-terminal truncations of hepatitis C virus (HCV) core protein were fused to varying lengths of amino-terminal truncated large hepatitis delta antigen (L-HDAg). These constructs were analysed for their ability to be expressed and the particles secreted in the presence of HBsAg after transfection into HuH-7 cells. The secretion efficiency of the various HCV core-HDAg chimeric proteins was generally poor. Constructs containing full length HDAg appeared to be more stable than truncated versions and the length of the inserted protein was restricted to around 40 amino acids. Thus, the use of L-HDAg as a chimera to package foreign proteins is limited. Consequently, a polyepitope (polytope) containing a B-cell epitope from human papillomavirus (HPV 16) and multiple T-cell epitopes from the HCV polyprotein was used to create the construct, L-HDAg-polyB. This chimeric protein was shown to be reliant on the co-expression of HBsAg for secretion into the cell culture fluid and was secreted more efficiently than the previous HCV core-HDAg constructs. These L-HDAg-polyB virus-like particles (VLPs) had a buoyant density of similar to 1.2 g/cm(3) in caesium chloride and similar to 1.15 g/cm(3) in sucrose. The VLPs were also immunoprecipitated using an anti-HBs but not an anti-HD antibody. Thus, these recombinant VLPs have similar biophysical properties to L-HDAg VLPs.
Resumo:
Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets alpha (1)-adrenoceptors (rho -TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (chi -MrIA and chi -MrIB from the mollusk-hunting C. marmoreus). rho -TIA and chi -MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.
Resumo:
Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.
Resumo:
Low-micromolar concentrations of sulfite, thiosulfate and sulfide, present in synthetic wastewater or anaerobic digester effluent, were quantified by means of derivatization with monobromobimane, followed by HPLC separation with fluorescence detection. The concentration of elemental sulfur was determined, after its extraction with chloroform from the derivatized sample, by HPLC with UV detection. Recoveries of sulfide (both matrices), and of thiosulfate and sulfite (synthetic wastewater) were between 98 and 103%. The in-run RSDs on separate derivatizations were 13 and 19% for sulfite (two tests), between 1.5 and 6.6% for thiosulfate (two tests) and between 4.1 and 7.7% for sulfide (three tests). Response factors for derivatives of sulfide and thiosulfate, but not sulfite, were steady over a 13-month period during which 730 samples were analysed. Dithionate and tetrathionate did not seem to be detectable with this method. The distinctness of the elemental sulfur and the derivatizing-agent peaks was improved considerably by detecting elution at 297 instead of 263 nm. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically, important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at similar to2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450,in, it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K-D = 0.7 mum), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
Experimental studies have been undertaken, involving in situ observations of the interaction between cover gas mixtures and molten magnesium. It has been shown that, in the presence of sulphur hexafluoride (SF6), the contact angle between solid MgO and molten magnesium is reduced, resulting in the wetting of MgO by magnesium metal. In contrast, it was observed that the absence of SF6 results in a large contact angle, poor wetting of the MgO by magnesium metal and a non-adherent surface film. It is proposed that the formation of an adherent, protective surface film under a cover gas mixture containing SF6 is due to capillary forces acting within the film.
Resumo:
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH2O), Thr (-CH3CHO) and Asp (-H2O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Circular disulfide-rich polypeptides were unknown a decade ago but over recent years a large family of such molecules has been discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bonds arranged in a cystine knot motif. In this motif, an embedded ring in the structure formed by two disulfide bonds and their connecting backbone segments is penetrated by the third disulfide bond. The combination of this knotted and strongly braced structure with a circular backbone renders the cyclotides impervious to enzymatic breakdown and makes them exceptionally stable. This article describes the discovery of the cyclotides in plants from the Rubiaceae and Violaceae families, their chemical synthesis, folding, structural characterisation, and biosynthetic origin. The cyclotides have a diverse range of biological applications, ranging from uterotonic action, to anti-HIV and neurotensin antagonism. Certain plants from which they are derived have a history of uses in native medicine, with activity being observed after oral ingestion of a tea made from the plants. This suggests the possibility that the cyclotides may be orally bioavailable. They therefore have a range of potential applications as a stable peptide framework.
Resumo:
Cyclotides are a novel class of circular, disulfide-rich peptides (similar to 30 amino acids) that display a broad range of bioactivities and have exceptionally high stability. Their physical properties, which include resistance to thermal and enzymatic degradation, can be attributed to their unique cyclic backbone and knotted arrangement of disulfide bonds. The applicability of linear peptides as drugs is potentially limited by their susceptibility to proteolytic cleavage and poor bioavailability. Such limitations may be overcome by using the cyclotide framework as a scaffold onto which new activities may be engineered. The potential use of cyclotides for drug design is evaluated here, with reference to rapidly increasing knowledge of natural cyclotides and the emergence of new techniques in peptide engineering.