77 resultados para Tripartite entanglement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter O is introduced, and a bound on the teleportation fidelity is given in terms of O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanistic models of pilling are discussed in general terms, and a framework for pilling simulations is thereby created. A fundamental flaw in earlier models of pilling is revealed. A more comprehensive model of fibre diffusion and withdrawal from the fabric is proposed, and this is solved in general terms to find the rate of fuzz growth. Fuzz wear-off and entanglement into pills are discussed. Fibre fatigue is introduced, and it is demonstrated that this potentially increases the rate of withdrawal of anchor fibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard Bell-inequality experiments test for violation of local realism by repeatedly making local measurements on individual copies of an entangled quantum state. Here we investigate the possibility of increasing the violation of a Bell inequality by making collective measurements. We show that the nonlocality of bipartite pure entangled states, quantified by their maximal violation of the Bell-Clauser-Horne inequality, can always be enhanced by collective measurements, even without communication between the parties. For mixed states we also show that collective measurements can increase the violation of Bell inequalities, although numerical evidence suggests that the phenomenon is not common as it is for pure states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement (Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The tripartite model of anxiety and depression has been proposed as a representation of the structure of anxiety and depression symptoms. The Mood and Anxiety Symptom Questionnaire (MASQ) has been put forwards as a valid measure of the tripartite model of anxiety and depression symptoms. This research set out to examine the factor structure of anxiety and depression symptoms in a clinical sample to assess the MASQ's validity for use in this population. MethodsThe present study uses confirmatory factor analytic methods to examine the psychometric properties of the MASQ in 470 outpatients with anxiety and mood disorder. Results: The results showed that none of the previously reported two-factor, three-factor or five-factor models adequately fit the data, irrespective of whether items or subscales were used as the unit of analysis. Conclusions: It was concluded that the factor structure of the MASQ in a mixed anxiety/depression clinical sample does not support a structure consistent with the tripartite model. This suggests that researchers using the MASQ with anxious/depressed individuals should be mindful of the instrument's psychometric limitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian-Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here a new approach to scalable quantum computing - a 'qubus computer' - which realizes qubit measurement and quantum gates through interacting qubits with a quantum communication bus mode. The qubits could be 'static' matter qubits or 'flying' optical qubits, but the scheme we focus on here is particularly suited to matter qubits. There is no requirement for direct interaction between the qubits. Universal two-qubit quantum gates may be effected by schemes which involve measurement of the bus mode, or by schemes where the bus disentangles automatically and no measurement is needed. In effect, the approach integrates together qubit degrees of freedom for computation with quantum continuous variables for communication and interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop criteria sufficient to enable detection of macroscopic coherence where there are not just two macroscopically distinct outcomes for a pointer measurement, but rather a spread of outcomes over a macroscopic range. The criteria provide a means to distinguish a macroscopic quantum description from a microscopic one based on mixtures of microscopic superpositions of pointer-measurement eigenstates. The criteria are applied to Gaussian-squeezed and spin-entangled states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that it is possible, in principle, to perform a Ramsey-type interference experiment to exhibit a coherent superposition of a single atom and a diatomic molecule. This gedanken experiment, based on the techniques of Aharonov and Susskind [Phys. Rev. 155, 1428 (1967)], explicitly violates the commonly accepted superselection rule that forbids coherent superpositions of eigenstates of differing atom number. A Bose-Einstein condensate plays the role of a reference frame that allows for coherent operations analogous to Ramsey pulses. We also investigate an analogous gedanken experiment to exhibit a coherent superposition of a single boson and a fermion, violating the commonly accepted superselection rule forbidding coherent superpositions of states of differing particle statistics. In this case, the reference frame is realized by a multimode state of many fermions. This latter case reproduces all of the relevant features of Ramsey interferometry, including Ramsey fringes over many repetitions of the experiment. However, the apparent inability of this proposed experiment to produce well-defined relative phases between two distinct systems each described by a coherent superposition of a boson and a fermion demonstrates that there are additional, outstanding requirements to fully lift the univalence superselection rule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures-all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.