73 resultados para Tissue stiffness
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.
Resumo:
A foliar rating system was developed to assess the progress of Fusarium wilt ( Panama disease) caused by Fusarium oxysporum f. sp. cubense in seven banana cultivars differing in their resistance to race 1 of the pathogen. Plantlets were transplanted into unamended soil naturally infested with the pathogen, soil amended with urea and soil amended with aged chicken manure. A corm invasion score was also developed to assess the accuracy of the foliar symptom score as an indicator of cultivar resistance. On the basis of foliar symptom scores alone, the response of five of the seven cultivars in the chicken manure treatment corresponded to their known field response. However, the response of the other two cultivars, both susceptible to the pathogen in the field, fell into two categories. One had a high foliar symptom score and a correspondingly high corm invasion score, whereas the other had a low foliar symptom score and a high corm invasion score. Breeders need to be aware of the two categories of susceptible response, if inferior breeding material is to be rejected early on in a breeding program.
Resumo:
The use of human brain tissue obtained at autopsy for neurochemical, pharmacological and physiological analyses is reviewed. RNA and protein samples have been found suitable for expression profiling by techniques that include RT-PCR, cDNA microarrays, western blotting, immunohistochemistry and proteomics. The rapid development of molecular biological techniques has increased the impetus for this work to be applied to studies of brain disease. It has been shown that most nucleic acids and proteins are reasonably stable post-mortem. However, their abundance and integrity can exhibit marked intra- and intercase variability, making comparisons between case-groups difficult. Variability can reveal important functional and biochemical information. The correct interpretation of neurochemical data must take into account such factors as age, gender, ethnicity, medicative history, immediate ante-mortem status, agonal state and post-mortem and post-autopsy intervals. Here we consider issues associated with the sampling of DNA, RNA and proteins using human autopsy brain tissue in relation to various ante- and post-mortem factors. We conclude that valid and practical measures of a variety of parameters may be made in human brain tissue, provided that specific factors are controlled.
Resumo:
This study describes the derivation of two new lines of transgenic mice that express Cre recombinase under the control of tyrosinase transcriptional elements. To determine the suitability of the Tyrosinase-Cre transgene for tissue-specific gene ablation studies, a fate map of Cre expression domains was determined using the Z/AP reporter strain. It was shown that Cre-expressing cells contribute to a wide array of neural crest and neuroepithelial-derived lineages. The melanocytes of the harderian gland and eye choroid, sympathetic cephalic ganglia, leptomeninges of the telencephalon, as well as cranial nerves (V), (VII), and (IX) are derived either fully or partly from Cre-expressing cephalic crest. The cells contributing to the cranial nerves were the first to exhibit Cre expression at E10.5 as they were migrating into the branchial arches. The melanocytes, chromaffin cells of the adrenal medulla, and dorsal root ganglia are derived from trunk neural crest that either express Cre or were derived from Cre-expressing precursors. An array of brain tissue including the basal forebrain, hippocampus, olfactory bulb, and the granule cell layer of the lateral cerebellum, as well as the retinal pigmented epithelium and glia of the optic nerve originate from Cre-expressing neuroepithelial cells. (C) 2003 Wiley-Liss, Inc.
Resumo:
In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.
Resumo:
The dissected carcass composition and fatty acid profiles of intermuscular fat from 110 male goat kids from six genotypes i.e. Boer x Angora (BA), Boer x Feral (BF), Boer x Saanen (BS), Feral x Feral (1717), Saanen x Angora (SA) and Saanen x Feral (SF) and two slaughter weight groups i.e. Capretto and Chevon (liveweight at slaughter 14-22 and 30-35 kg, respectively) were compared. Carcass tissue distribution for various genotypes was: muscle (63-66%), fat (10-13%) and bone (21-24%). Genotype significantly (P < 0.05) influenced the carcass composition; BA and FF carcasses had significantly higher muscle to bone ratio, while carcasses from BS kids were leaner compared to other genotypes. However, the two slaughter weight groups did not differ significantly (P > 0.05) in terms of carcass composition, when compared at the same carcass weight. In the present study, significant (P < 0.01) correlations were observed between percentage of muscle, fat and bone in most of the primal cuts and that in the carcass side. The main saturated fatty acids (SFAs) identified were palmitic (16:0) and stearic acid (18:0), while oleic acid (18: 1, omega9) was the main unsaturated fatty acid (UFA) in the intermuscular fat from goat kids. There were significant (P < 0.05) differences between genotypes in the proportions of individual fatty acids. Adipose tissue from BS kids had significantly higher UFAs (mainly oleic acid) and thus had a significantly lower melting point compared to other genotypes. There were significantly higher proportions of palmitic acid (35%) in the adipose tissue from Capretto kids compared to that from Chevon kids (22%). The concentration of UFAs increased in the adipose tissue from Capretto to Chevon carcasses. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An 8-year-old female neutered Siamese cat was presented with a recent history of incomplete excision of an apocrine gland adenocarcinoma from the palmar aspect of the right antebrachium, just proximal to the carpal joint. There was no evidence of metastasis. Wide surgical excision of the previous surgery site was performed resulting in a soft tissue defect. Partial reconstruction was achieved using digital pad transposition of the first digit (dewclaw), forming a local axial pattern flap that was transposed into the adjacent defect. The remaining defect was closed by primary apposition. The skin flap healed successfully. Some breakdown of the skin closed by primary apposition necessitated open wound management. The cosmetic and functional result of the first digital pad transposition was considered excellent, rendering it a useful means to reconstruct soft tissue defects in the carpal region.
Resumo:
Posteroanterior stiffness of the lumbar spine is influenced by factors, including trunk muscle activity and intra-abdominal pressure (IAP). Because these factors vary with breathing, this study investigated whether stiffness is modulated in a cyclical manner with respiration. A further aim was to investigate the relationship between stiffness and IAP or abdominal and paraspinal muscle activity. Stiffness was measured from force-displacement responses of a posteroanterior force applied over the spinous process of L-2 and L-4. Recordings were made of IAP and electromyographic activity from L-4/L-2 erector spinae, abdominal muscles, and chest wall. Stiffness was measured with the lung volume held at the extremes of tidal volume and at greater and lesser volumes. Stiffness at L-4 and L-2 increased above base-level values at functional residual capacity (L-2 14.9 N/mm and L-4 15.3 N/mm) with both inspiratory and expiratory efforts. The increase was related to the respiratory effort and was greatest during maximum expiration (L-2 24.9 N/mm and L-4 23.9 N/mm). The results indicate that changes in trunk muscle activity and IAP with respiratory efforts modulate spinal stiffness. In addition, the diaphragm may augment spinal stiffness via attachment of its crural fibers to the lumbar vertebrae.
Resumo:
This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.
Resumo:
Tissue Doppler imaging allows assessment of left ventricular dyssynchrony and resynchronization after biventricular pacing.
Resumo:
The detection of preclinical heart disease is a new direction in diabetes care. This comment describes the study by Vinereanu and co-workers in this issue of Clinical Science in which tissue Doppler echocardiography has been employed to demonstrate subtle systolic and diastolic dysfunction in Type 11 diabetic patients who had normal global systolic function and were free of coronary artery disease. The aetiology of early ventricular dysfunction in diabetes relates to complex intramyocardial and extramyocardial mechanisms. The initiating event may be due to insulin resistance, and involves abnormal myocardial substrate utilization and uncoupling of mitochondrial oxidative phosphorylation. Dysglycaemia plays an important role via the effects of oxidative stress, protein kinase C activation and advanced glycosylation end-products on inflammatory signalling, collagen metabolism and fibrosis. Extramyocardial mechanisms involve peripheral endothelial dysfunction, arterial stiffening and autonomic neuropathy. The clinical significance of the ventricular abnormalities described is unknown. Confirmation of their prognostic importance for cardiac disease in diabetes would justify routine screening for presymptomatic ventricular dysfunction, as well as clinical trials of novel agents for correcting causal mechanisms. These considerations could also have implications for patients with obesity and the metabolic syndrome.