98 resultados para Simulations, Quantum Models, Resonant Tunneling Diode


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important advantages of database systems is that the underlying mathematics is rich enough to specify very complex operations with a small number of statements in the database language. This research covers an aspect of biological informatics that is the marriage of information technology and biology, involving the study of real-world phenomena using virtual plants derived from L-systems simulation. L-systems were introduced by Aristid Lindenmayer as a mathematical model of multicellular organisms. Not much consideration has been given to the problem of persistent storage for these simulations. Current procedures for querying data generated by L-systems for scientific experiments, simulations and measurements are also inadequate. To address these problems the research in this paper presents a generic process for data-modeling tools (L-DBM) between L-systems and database systems. This paper shows how L-system productions can be generically and automatically represented in database schemas and how a database can be populated from the L-system strings. This paper further describes the idea of pre-computing recursive structures in the data into derived attributes using compiler generation. A method to allow a correspondence between biologists' terms and compiler-generated terms in a biologist computing environment is supplied. Once the L-DBM gets any specific L-systems productions and its declarations, it can generate the specific schema for both simple correspondence terminology and also complex recursive structure data attributes and relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new algebraic Bethe ansatz scheme is proposed to diagonalize classes of integrable models relevant to the description of Bose-Einstein condensation in dilute alkali gases. This is achieved by introducing the notion of Z-graded representations of the Yang-Baxter algebra. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For dynamic simulations to be credible, verification of the computer code must be an integral part of the modelling process. This two-part paper describes a novel approach to verification through program testing and debugging. In Part 1, a methodology is presented for detecting and isolating coding errors using back-to-back testing. Residuals are generated by comparing the output of two independent implementations, in response to identical inputs. The key feature of the methodology is that a specially modified observer is created using one of the implementations, so as to impose an error-dependent structure on these residuals. Each error can be associated with a fixed and known subspace, permitting errors to be isolated to specific equations in the code. It is shown that the geometric properties extend to multiple errors in either one of the two implementations. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantum circuit implementing 5-qubit quantum-error correction on a linear-nearest-neighbor architecture is described. The canonical decomposition is used to construct fast and simple gates that incorporate the necessary swap operations allowing the circuit to achieve the same depth as the current least depth circuit. Simulations of the circuit's performance when subjected to discrete and continuous errors are presented. The relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis on determining the concatenated error correction threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a quantum electromechanical system comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal electrodes [Park et al., Nature 407, 57 (2000)]. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare and contrast the entanglement in the ground state of two Jahn-Teller models. The Exbeta system models the coupling of a two-level electronic system, or qubit, to a single-oscillator mode, while the Exepsilon models the qubit coupled to two independent, degenerate oscillator modes. In the absence of a transverse magnetic field applied to the qubit, both systems exhibit a degenerate ground state. Whereas there always exists a completely separable ground state in the Exbeta system, the ground states of the Exepsilon model always exhibit entanglement. For the Exbeta case we aim to clarify results from previous work, alluding to a link between the ground-state entanglement characteristics and a bifurcation of a fixed point in the classical analog. In the Exepsilon case we make use of an ansatz for the ground state. We compare this ansatz to exact numerical calculations and use it to investigate how the entanglement is shared between the three system degrees of freedom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate resonant tunnelling through molecular states of an Aharonov-Bohm (AB) interferometer composed of two coupled quantum dots. The conductance of the system shows two resonances associated with the bonding and the antibonding quantum states. We predict that the two resonances are composed of a Breit-Wigner resonance and a Fano resonance, of which the widths and Fano factor depend on the AB phase very sensitively. Further, we point out that the bonding properties, such as the covalent and ionic bonding, can be identified by the AB oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a scheme that makes a quantum nondemolition (QND) measurement of the excitation level of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two beam bending modes. The nonlinear coupling between the two modes shifts the resonant frequency of the readout oscillator in proportion to the excitation level of the system oscillator. This frequency shift may be detected as a phase shift of the readout oscillation when driven on resonance. We derive an equation for the reduced density matrix of the system oscillator, and use this to study the conditions under which discrete jumps in the excitation level occur. The appearance of jumps in the actual quantity measured is also studied using the method of quantum trajectories. We consider the feasibility of the scheme for experimentally accessible parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NPT and NVT Monte Carlo simulations are applied to models for methane and water to predict the PVT behaviour of these fluids over a wide range of temperatures and pressures. The potential models examined in this paper have previously been presented in the literature with their specific parameters optimised to fit phase coexistence data. The exponential-6 potential for methane gives generally good prediction of PVT behaviour over the full range of temperature and pressures studied with the only significant deviation from experimental data seen at high temperatures and pressures. The NSPCE water model shows very poor prediction of PVT behaviour, particularly at dense conditions. To improve this. the charge separation in the NSPCE model is varied with density. Improvements for vapour and liquid phase PVT predictions are achieved with this variation. No improvement was found in the prediction of the oxygen-oxygen radial distribution by varying charge separation under dense phase conditions. (C) 2004 Elsevier B.V. All rights reserved.