67 resultados para Sequence Alignment
Resumo:
By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/similar tothanaraj/altExtron/.
Resumo:
Three Bahama-like carbonate plaforms-the Guilin, Yangshuo and Yanshan-occurred in Guilin and the surrounding regions during Middle and Late Devonian, which, at a broad scale, are part of an extensive carbonate platform (Xiangzhou carbonate platform) facies in South China. The intraplatform depression facies, a unique characteristic of the Chinese Devonian depositional sequence, separates Bahama-like (platform-to-depression) carbonate subplatfonns. Intraplatform depressions resulted from syndepositional faulting that cut the basement of carbonate subplatforms and affected further platform development. The Liangshuijing section, located between the Guilin platform in the north and the Yangshuo platform in the south, is representative of the fore-reef slope facies neighboring an intraplatform. depression. The South edge of the fore-reef slope lies adjacent to the Yangshuo reef carbonate platform, and the north edge graded into the Yangdi pelagic depression facies. A detailed sedimentary and microfacies analysis work done in this study at the Liangshuijing section shows a distinct vertical facies change from back-reef, restricted platform, hemipelagic, to fore-reefslope facies, differing from either shallow-water benthic facies or typical pelagic facies. Various benthic and pelagic lithofacies and their associations have been recognized in the Liangshuijing section, including dolomitic rudstone, gastropod wackestone, Amphipora floatstone, tentaculitoid wackestone, stromatolite and oncoid limestone, Amphipora grainstone, grain flows, laminated limestone, flat-pebble and brachiopod floatstone, and carbonate turbidites. Eight types of sedimentary cycles composed of two or three lithofacies have been distinguished, which are able to indicate environment changes. Stromatolites, oncoids, grain flows, carbonate turbidites, and tentaculitoid limestones characterize the slope and intraplatform depression lithofacies. Analysis of the vertical sedimentary cycles in the Liangshuijinag section and the lateral stratigraphic equivalents suggest the differing facies patterns occurred at the middle Varcus Zone (Givetian) of Middle Devonian, coeval with the development of fore-reef slope facies in the Guilin area in response to syndeposifional faulting.
Resumo:
The cattle tick, Boophilus microplus, is a major pest of cattle in Australia, Central and South America, and parts of Africa and Asia. Control of ticks with organophosphates (OPs) and carbamates, which target acetylcholinesterases (AChE), led to evolution of resistance to these pesticides. Alleles at the locus studied here, AChE2, from OP-susceptible female ticks from Australia and Mexico differed at 46 of 1689 nucleotide positions (20 putative amino acid differences) whereas alleles from three strains of OP-resistant ticks from Australia differed with the allele from the Australian susceptible ticks at six to 13 nucleotide positions (three to six putative amino acid differences). However, the role, if any, of these polymorphisms in the OP-resistance phenotype is unknown. Certainly none of the polymorphisms correspond to sites in ACK that are involved in catalysis or binding of acetylcholine in other organisms. Both of the AChE loci of B. microplus, AChE1 and AChE2, are apparently expressed in synganglia; AChE1 is also expressed in salivary glands and ovaries, in OP-susceptible and OP-resistant ticks. This seems to contradict studies of enzyme kinetics, which indicated that only one form of AChE was present in the synganglia, the site of the action of OPs, in this species of tick. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Sequence variation in the internal transcribed spacer (ITS-1) ribosomal DNA subunit was examined for sorghum midge obtained from introduced and native hosts in south-eastern and central Queensland. No variation was observed relative to host plant or geographical distance for midges collected from two introduced hosts, grain sorghum (Sorghum bicolor ) and Johnson grass (S. halepense ); however, sequence differences were observed between midges from introduced and native hosts and among midges from a single native host, slender bluegrass (Dichanthium affine ). No evidence was observed of introduced midges on native hosts, or vice versa. These results agree with previously hypothesised host distributions for native and introduced midges in Australia, and expand the sample of introduced hosts to include Johnson grass. They suggest that Stenodiplosis sorghicola , the principal midge infesting grain sorghum, is also the most common species on Johnson grass. This confirms that Johnson grass plays a role in the population dynamics of S. sorghicola and suggests that midges originating from Johnson grass may influence levels of infestation in grain sorghum.
Resumo:
Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.