114 resultados para Science teaching methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Power systems rely greatly on ancillary services in maintaining operation security. As one of the most important ancillary services, spinning reserve must be provided effectively in the deregulated market environment. This paper focuses on the design of an integrated market for both electricity and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the ISO's total payment while ensuring system security. Genetic algorithms are used in the finding of the global optimal solutions for this dispatching problem. Case studies and corresponding analyses haw been carried out to demonstrate and discuss the efficiency and usefulness of the proposed market.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic algorithms (GAs) are known to locate the global optimal solution provided sufficient population and/or generation is used. Practically, a near-optimal satisfactory result can be found by Gas with a limited number of generations. In wireless communications, the exhaustive searching approach is widely applied to many techniques, such as maximum likelihood decoding (MLD) and distance spectrum (DS) techniques. The complexity of the exhaustive searching approach in the MLD or the DS technique is exponential in the number of transmit antennas and the size of the signal constellation for the multiple-input multiple-output (MIMO) communication systems. If a large number of antennas and a large size of signal constellations, e.g. PSK and QAM, are employed in the MIMO systems, the exhaustive searching approach becomes impractical and time consuming. In this paper, the GAs are applied to the MLD and DS techniques to provide a near-optimal performance with a reduced computational complexity for the MIMO systems. Two different GA-based efficient searching approaches are proposed for the MLD and DS techniques, respectively. The first proposed approach is based on a GA with sharing function method, which is employed to locate the multiple solutions of the distance spectrum for the Space-time Trellis Coded Orthogonal Frequency Division Multiplexing (STTC-OFDM) systems. The second approach is the GA-based MLD that attempts to find the closest point to the transmitted signal. The proposed approach can return a satisfactory result with a good initial signal vector provided to the GA. Through simulation results, it is shown that the proposed GA-based efficient searching approaches can achieve near-optimal performance, but with a lower searching complexity comparing with the original MLD and DS techniques for the MIMO systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA Microarray is a powerful tool to measure the level of a mixed population of nucleic acids at one time, which has great impact in many aspects of life sciences research. In order to distinguish nucleic acids with very similar composition by hybridization, it is necessary to design microarray probes with high specificities and sensitivities. Highly specific probes correspond to probes having unique DNA sequences; whereas highly sensitive probes correspond to those with melting temperature within a desired range and having no secondary structure. The selection of these probes from a set of functional DNA sequences (exons) constitutes a computationally expensive discrete non-linear search problem. We delegate the search task to a simple yet effective Evolution Strategy algorithm. The computational efficiency is also greatly improved by making use of an available bioinformatics tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of liquid-retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgement, codes of practice and previous experience. Structural design problems are often ill structured and there is a need to develop programming environments that can incorporate engineering judgement along with algorithmic tools. Recent developments in artificial intelligence have made it possible to develop an expert system that can provide expert advice to the user in the selection of design criteria and design parameters. This paper introduces the development of an expert system in the design of liquid-retaining structures using blackboard architecture. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. It is a coupled system combining symbolic processing with traditional numerical processing. The expert system developed is based on British Standards Code of Practice BS8007. Explanations are made to assist inexperienced designers or civil engineering students to learn how to design liquid-retaining structures effectively and sustainably in their design practices. The use of this expert system in disseminating heuristic knowledge and experience to practitioners and engineering students is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Promiscuous human leukocyte antigen (HLA) binding peptides are ideal targets for vaccine development. Existing computational models for prediction of promiscuous peptides used hidden Markov models and artificial neural networks as prediction algorithms. We report a system based on support vector machines that outperforms previously published methods. Preliminary testing showed that it can predict peptides binding to HLA-A2 and -A3 super-type molecules with excellent accuracy, even for molecules where no binding data are currently available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Normal mixture models are often used to cluster continuous data. However, conventional approaches for fitting these models will have problems in producing nonsingular estimates of the component-covariance matrices when the dimension of the observations is large relative to the number of observations. In this case, methods such as principal components analysis (PCA) and the mixture of factor analyzers model can be adopted to avoid these estimation problems. We examine these approaches applied to the Cabernet wine data set of Ashenfelter (1999), considering the clustering of both the wines and the judges, and comparing our results with another analysis. The mixture of factor analyzers model proves particularly effective in clustering the wines, accurately classifying many of the wines by location.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finding motifs that can elucidate rules that govern peptide binding to medically important receptors is important for screening targets for drugs and vaccines. This paper focuses on elucidation of peptide binding to I-A(g7) molecule of the non-obese diabetic (NOD) mouse - an animal model for insulin-dependent diabetes mellitus (IDDM). A number of proposed motifs that describe peptide binding to I-A(g7) have been proposed. These motifs results from independent experimental studies carried out on small data sets. Testing with multiple data sets showed that each of the motifs at best describes only a subset of the solution space, and these motifs therefore lack generalization ability. This study focuses on seeking a motif with higher generalization ability so that it can predict binders in all A(g7) data sets with high accuracy. A binding score matrix representing peptide binding motif to A(g7) was derived using genetic algorithm (GA). The evolved score matrix significantly outperformed previously reported

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose/Objectives: To evaluate the impact of a cancer nursing education course on RNs. Design: Quasi-experimental, longitudinal, pretest/post-test design, with a follow-up assessment six weeks after the completion of the nursing education course. Setting: Urban, nongovernment, cancer control agency in Australia. Sample: 53 RNs, of whom 93% were female, with a mean age of 44.6 years and a mean of 16.8 years of experience in nursing; 86% of the nurses resided and worked in regional areas outside of the state capital. Methods: Scales included the Intervention With Psychosocial Needs: Perceived Importance and Skill Level Scale, Palliative Care Quiz for Nurses, Breast Cancer Knowledge, Preparedness for Cancer Nursing, and Satisfaction With Learning. Data were analyzed using multiple analysis of variance and paired t tests. Main Research Variables: Cancer nursing-related knowledge, preparedness for cancer nursing, and attitudes toward and perceived skills in the psychosocial care of patients with cancer and their families. Findings: Compared to nurses in the control group, nurses who attended the nursing education course improved in their cancer nursing-related knowledge, preparedness for cancer nursing, and attitudes toward and perceived skills in the psychosocial care of patients with cancer and their families. Improvements were evident at course completion and were maintained at the six-week follow-up assessment. Conclusions: The nursing education course was effective in improving nurses' scores on all outcome variables. Implications for Nursing: Continuing nursing education courses that use intensive mode timetabling, small group learning, and a mix of teaching methods, including didactic and interactive approaches and clinical placements, are effective and have the potential to improve nursing practice in oncology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A biologically realizable, unsupervised learning rule is described for the online extraction of object features, suitable for solving a range of object recognition tasks. Alterations to the basic learning rule are proposed which allow the rule to better suit the parameters of a given input space. One negative consequence of such modifications is the potential for learning instability. The criteria for such instability are modeled using digital filtering techniques and predicted regions of stability and instability tested. The result is a family of learning rules which can be tailored to the specific environment, improving both convergence times and accuracy over the standard learning rule, while simultaneously insuring learning stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering. The aims of the course are to provide a common understanding of the nature of software engineering for all Boeing Australia's engineering staff, and to ensure they understand the practices used throughout the company. The course is designed so that it can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The immediate feedback on the course indicates that it has been well received by the participants, but also indicates a need for more advanced courses in specific areas. The long-term feedback from participants is less positive, and the long-term feedback from the managers of the course participants indicates a need to expand on the coverage of the Boeing-specific processes and methods. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control Engineering is an essential part of university electrical engineering education. Normally, a control course requires considerable mathematical as well as engineering knowledge and is consequently regarded as a difficult course by many undergraduate students. From the academic point of view, how to help the students to improve their learning of the control engineering knowledge is therefore an important task which requires careful planning and innovative teaching methods. Traditionally, the didactic teaching approach has been used to teach the students the concepts needed to solve control problems. This approach is commonly adopted in many mathematics intensive courses; however it generally lacks reflection from the students to improve their learning. This paper addresses the practice of action learning and context-based learning models in teaching university control courses. This context-based approach has been practised in teaching several control engineering courses in a university with promising results, particularly in view of student learning performances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.