77 resultados para Requisito não-funcional. Arquitetura de software. NFR-framework. Padrão arquitetural
Resumo:
Recent reviews of the desistance literature have advocated studying desistance as a process, yet current empirical methods continue to measure desistance as a discrete state. In this paper, we propose a framework for empirical research that recognizes desistance as a developmental process. This approach focuses on changes in the offending rare rather than on offending itself We describe a statistical model to implement this approach and provide an empirical example. We conclude with several suggestions for future research endeavors that arise from our conceptualization of desistance.
Resumo:
Computer assisted learning has an important role in the teaching of pharmacokinetics to health sciences students because it transfers the emphasis from the purely mathematical domain to an 'experiential' domain in which graphical and symbolic representations of actions and their consequences form the major focus for learning. Basic pharmacokinetic concepts can be taught by experimenting with the interplay between dose and dosage interval with drug absorption (e.g. absorption rate, bioavailability), drug distribution (e.g. volume of distribution, protein binding) and drug elimination (e.g. clearance) on drug concentrations using library ('canned') pharmacokinetic models. Such 'what if' approaches are found in calculator-simulators such as PharmaCalc, Practical Pharmacokinetics and PK Solutions. Others such as SAAM II, ModelMaker, and Stella represent the 'systems dynamics' genre, which requires the user to conceptualise a problem and formulate the model on-screen using symbols, icons, and directional arrows. The choice of software should be determined by the aims of the subject/course, the experience and background of the students in pharmacokinetics, and institutional factors including price and networking capabilities of the package(s). Enhanced learning may result if the computer teaching of pharmacokinetics is supported by tutorials, especially where the techniques are applied to solving problems in which the link with healthcare practices is clearly established.
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Within the information systems field, the task of conceptual modeling involves building a representation of selected phenomena in some domain. High-quality conceptual-modeling work is important because it facilitates early detection and correction of system development errors. It also plays an increasingly important role in activities like business process reengineering and documentation of best-practice data and process models in enterprise resource planning systems. Yet little research has been undertaken on many aspects of conceptual modeling. In this paper, we propose a framework to motivate research that addresses the following fundamental question: How can we model the world to better facilitate our developing, implementing, using, and maintaining more valuable information systems? The framework comprises four elements: conceptual-modeling grammars, conceptual-modeling methods, conceptual-modeling scripts, and conceptual-modeling contexts. We provide examples of the types of research that have already been undertaken on each element and illustrate research opportunities that exist.
Resumo:
This paper proposes an alternative geometric framework for analysing the inter-relationship between domestic saving, productivity and income determination in discrete time. The framework provides a means of understanding how low saving economies like the United States sustained high growth rates in the 1990s whereas high saving Japan did not. It also illustrates how the causality between saving and economic activity runs both ways and that discrete changes in national output and income depend on both current and previous accumulation behaviour. The open economy analogue reveals how international capital movements can create external account imbalances that enhance income growth for both borrower and lender economies. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper an approach to extreme event control in wastewater treatment plant operation by use of automatic supervisory control is discussed. The framework presented is based on the fact that different operational conditions manifest themselves as clusters in a multivariate measurement space. These clusters are identified and linked to specific and corresponding events by use of principal component analysis and fuzzy c-means clustering. A reduced system model is assigned to each type of extreme event and used to calculate appropriate local controller set points. In earlier work we have shown that this approach is applicable to wastewater treatment control using look-up tables to determine current set points. In this work we focus on the automatic determination of appropriate set points by use of steady state and dynamic predictions. The performance of a relatively simple steady-state supervisory controller is compared with that of a model predictive supervisory controller. Also, a look-up table approach is included in the comparison, as it provides a simple and robust alternative to the steady-state and model predictive controllers, The methodology is illustrated in a simulation study.
Resumo:
In this paper I explore the Indigenous Australian women's performance classroom (hereafter ANTH2120) as a dialectic and discursive space where the location of possibility is opened for female Indigenous performers to enter into a dialogue from and between both non-Indigenous and Indigenous voices. The work of Bakhtin on dialogue serves as a useful standpoint for understanding the multiple speaking positions and texts in the ANTH2120 context. Bakhtin emphasizes performance, history, actuality and the openness of dialogue to provide an important framework for analysing multiple speaking positions and ways of making meaning through dialogue between shifting and differing subjectivities. I begin by briefly critiquing Bakhtin's "dialogic imagination" and consider the application and usefulness of concepts such as dialogism, heteroglossia and the utterance to understanding the ANTH2120 classroom as a polyphonic and discursive space. I then turn to an analysis of dialogue in the ANTH2120 classroom and primarily situate my gaze on an examination of the interactions that took place between the voices of myself as family/teacher/student and senior Yanyuwa women from the r e m o t e N o r t h e r n T e r r i t o r y A b o r i g i n a l c o m m u n i t y o f B o r r o l o o l a as family/performers/teachers. The 2000 and 2001 Yanyuwa women's performance workshops will be used as examples of the way power is constantly shifting in this dialogue to allow particular voices to speak with authority, and for others to remain silent as roles and relationships between myself and the Yanyuwa women change. Conclusions will be drawn regarding how my subject positions and white race privilege affect who speaks, who listens and on whose terms, and further, the efficacy of this pedagogical platform for opening up the location of possibility for Indigenous Australian women to play a powerful part in the construction of knowledges about women's performance traditions.
Resumo:
Seasonal climate forecasting offers potential for improving management of crop production risks in the cropping systems of NE Australia. But how is this capability best connected to management practice? Over the past decade, we have pursued participative systems approaches involving simulation-aided discussion with advisers and decision-makers. This has led to the development of discussion support software as a key vehicle for facilitating infusion of forecasting capability into practice. In this paper, we set out the basis of our approach, its implementation and preliminary evaluation. We outline the development of the discussion support software Whopper Cropper, which was designed for, and in close consultation with, public and private advisers. Whopper Cropper consists of a database of simulation output and a graphical user interface to generate analyses of risks associated with crop management options. The charts produced provide conversation pieces for advisers to use with their farmer clients in relation to the significant decisions they face. An example application, detail of the software development process and an initial survey of user needs are presented. We suggest that discussion support software is about moving beyond traditional notions of supply-driven decision support systems. Discussion support software is largely demand-driven and can compliment participatory action research programs by providing cost-effective general delivery of simulation-aided discussions about relevant management actions. The critical role of farm management advisers and dialogue among key players is highlighted. We argue that the discussion support concept, as exemplified by the software tool Whopper Cropper and the group processes surrounding it, provides an effective means to infuse innovations, like seasonal climate forecasting, into farming practice. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.