88 resultados para Plate girders
Resumo:
The extant lungfish, including three genera, the Australian, South American and African lungfishes, retain a dentition that appeared first in the Devonian, in some of the oldest members of this group. The dentition consists of permanent tooth plates with persistent cusps that appear early in development of the fish. The cusps, separate early in development, form ridges that are arranged in a radiating pattern, and fusion of the cusps to each other and to the underlying jaw bone produces a tooth plate. The lungfish dentition is based on a template of mantle dentine that surrounds bone trabeculae enclosed in the tooth plate. The mantle layer is covered by enamel. In most derived dipnoans, this framework encloses two further forms of dentine, known as interdenteonal and circumdenteonal dentines. The tooth plates grow in area and in depth without evidence of macroscopic resorption of dentines or of enamel. Increase in size and changes in shape of lungfish tooth plates is actually achieved by a process involving microscopic remodelling of the bone contained within the margin of each tooth plate, and the later addition of new dentines and enamel within and around the bone. This is accomplished without creating weakness in the structural integrity of the tooth plate and bone complex, and proceeds in line with growth and remodelling of the jaw bones attached to the tooth plates.
Resumo:
The ultrastructure of the spermatozoa of Cnemidophorus gularis gularis, Cnemidophorus ocellifer, and Kentropyx altamazonica is described for the first time. Mature spermatozoa of Cnemidophorus spp. and K. altamazonica differ in the occurrence of a perforatorial base plate, the enlargement of axonemal fibers 3 and 8, and shape of mitochondria. The comparisons of the ultrastructure sperm of Cnemidophorus spp. and K. altamazonica with Ameiva ameiva [J. Morphol. (2002) in press] suggest that Ameiva and Cnemidophorus are more similar to each other than either is to Kentropyx. Statistical analyses reveal that sperm of all three species studied are significantly different in the following dimensions: head, acrosome, distal centriole length, and nuclear shoulders width. There was no variable statistically different between the Cnemidophorus spp. only. The length of the tail, midpiece, entire sperm, and nuclear rostrum are significantly different between K. altamazonica and Cnemidophorus spp. Our results indicate that sperm ultrastructure presents intra and intergeneric variability. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
High-throughput screening (HTS) using high-density microplates is the primary method for the discovery of novel lead candidate molecules. However, new strategies that eschew 2D microplate technology, including technologies that enable mass screening of targets against large combinatorial libraries, have the potential to greatly increase throughput and decrease unit cost. This review presents an overview of state-of-the-art microplate-based HTS technology and includes a discussion of emerging miniaturized systems for HTS. We focus on new methods of encoding combinatorial libraries that promise throughputs of as many as 100 000 compounds per second.
Resumo:
The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The flow field and the energy transport near thermoacoustic couples are simulated using a 2D full Navier-Stokes solver. The thermoacoustic couple plate is maintained at a constant temperature; plate lengths, which are short and long compared with the particle displacement lengths of the acoustic standing waves, are tested. Also investigated are the effects of plate spacing and the amplitude of the standing wave. Results are examined in the form of energy vectors, particle paths, and overall entropy generation rates. These show that a net heat-pumping effect appears only near the edges of thermoacoustic couple plates, within about a particle displacement distance from the ends. A heat-pumping effect can be seen even on the shortest plates tested when the plate spacing exceeds the thermal penetration depth. It is observed that energy dissipation near the plate increases quadratically as the plate spacing is reduced. The results also indicate that there may be a larger scale vortical motion outside the plates which disappears as the plate spacing is reduced. (C) 2002 Acoustical Society of America.
Resumo:
Experiments to investigate the transition process in hypervelocity boundary layers were performed in the T4 free-piston shock tunnel. An array of thin-film heat-transfer gauges was used to detect the location and extent of the transitional region on a 1500 mm long x 120 turn wide flat plate, which formed one of the walls of a duct. The experiments were performed in a Mach 6 flow of air with 6- and 12-MJ/kg nozzle-supply enthalpies at unit Reynolds numbers ranging from 1.6 x 10(6) to 4.9 x 10(6) m(-1). The results show that the characteristics typical of transition taking place through the initiation, growth, and merger of turbulent spots are evident in the heat-transfer signals. A 2-mm-high excrescence located 440 turn from the leading edge was found to be capable of generating a turbulent wedge within an otherwise laminar boundary layer at a unit Reynolds number of 2.6 x 10(6) m(-1) at the 6-MJ/kg condition. A tripping strip, located 100 mm from the leading edge and consisting of a line 37 teeth of 2 rum height equally spaced and spanning the test surface, was also found to be capable of advancing the transition location at the same condition and at the higher enthalpy condition.
Resumo:
Sucrose has been shown to attenuate the behavioural response to painful procedures in human infants undergoing circumcision or blood collection via heelstick. Sucrose has also been found to have a behaviour-modifying effect in neonatal rats exposed to a hot plate. The effect was abolished in neonatal rats by injection of the opioid antagonist naltrexone, suggesting that it was mediated by endogenous opioids. In this experiment, the behaviour of 571 newborn Large White x Landrace hybrid piglets in a specific-pathogen-free piggery of the University of Queensland was recorded during and after the routine management practices of tail docking, ear notching and teeth clipping. Piglets were randomly assigned to receive 1.0 ml of a 12% sucrose solution (treatment group) or a placebo (1.0 ml of air) administered via syringe in the mouth, 60 s before commencement of one of the management procedures. Behaviours were recorded at the time of the procedure, and then 2 min after completion of the procedure. Piglets that received the sucrose solution did not behave significantly differently from piglets receiving the placebo. Regardless of whether sucrose or placebo was administered, piglets undergoing the routine management procedures showed significantly greater behavioural responses than piglets undergoing no procedure. It was concluded that under commercial conditions, a 12% sucrose solution administered I min prior to surgery was not effective in decreasing the behavioural indicators of distress in piglets undergoing routine management procedures, Further research into methods of minimising distress caused to piglets by these procedures is recommended.
Resumo:
The microbiological quality of routinely processed tripe and rumen pillars were compared with those derived after emptying the rumen (paunch) without using water (dry dumping) and after deliberately bursting the paunches before processing. Prior to packing the mean:log(10) aerobic plate counts (APC) for the routinely processed tripe and rumen pillars were 3.55+/-1.08 and 3.28+/-0.87/g respectively. The corresponding mean log(10) total coliform counts (TCC) were 1.27+/-1.28 and 2.08+/-0.87. The mean log(10) APC counts on tripe and rumen pillars after dry-dumping were 3.06+/-0.60 and 3.90+/-0.75/g, respectively. The corresponding mean log(10) TCC were 1.03+/-0.60/g and 2.75+/-1.14/g respectively. After deliberately bursting the paunches, before processing, the mean log(10) APC counts on tripe and rumen pillars were 3.55+/-0.83/g and 3.50+/-0.59/g and the mean log(10) TCC were 1.54+/-0.95/g and 2.66+/-0.82/g respectively. In all cases the prevalence of Salmonella and Campylobacter spp. was less than 3%. The results indicate that both tripe and rumen pillars can be produced after dry dumping without compromising the quality of tripe and rumen pillars. Similarly, incidentally burst paunches that become contaminated with ingesta on the serosal surface can be processed without compromising product quality. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The mid-crustal Alpine Schist in central Southern Alps, New Zealand has been exhumed during the past similar to3 m.y. on the hanging wall of the oblique-slip Alpine Fault. These rocks underwent ductile deformation during their passage through the similar to 150-km-wide Pacific-Australia plate boundary zone. Likely to be Cretaceous in age, peak metamorphism predates the largely Pliocene and younger oblique convergence that continues to uplift the Southern Alps today. Late Cenozoic ductile deformation constructively reinforced a pre-existing fabric that was well oriented to accommodate a dextral-transpressive overprint. Quartz microstructures below a recently exhumed brittle-ductile transition zone reflect a late Cenozoic increment of ductile strain that was distributed across deeper levels of the Pacific Plate. Deformation was transpressive, including a dextral-normal shear component that bends and rotates a delaminated panel of Pacific Plate crust onto the oblique footwall ramp of the Alpine Fault. Progressive ductile shear in mylonites at the base of the Pacific Plate overprints earlier fabrics in a dextral-reverse sense, a deformation that accompanies translation of the schists up the Alpine Fault. Ductile shear along that structure affects not only the 12-km-thick section of Alpine mylonites, but is distributed across several kilometres of overlying nonmylonitic rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The hanging wall of the Alpine Fault near Franz Josef Glacier has been exhumed during the past similar to2-3 m.y. providing a sample of the ductilely deformed middle crust of a modem obliquely convergent orogen. Presently exposed rocks of the Pacific Plate are inferred to have undergone several phases of ductile deformation as they moved westward above a mid-crustal detachment. Initially they were transpressed across the outboard part of the orogen, resulting in oblate fabrics with a down-dip stretch. Later, they encountered the Alpine Fault, experiencing an oblique-slip backshearing on vertical planes. This escalator-like deformation tilted and thinned the incoming crust onto that crustal-scale oblique ramp. This style of hanging wall deformation may affect only the most rapidly uplifting, central part of the Southern Alps because of the low flexural rigidity of the crust in that region and its displacement over a relatively sharp ramp-angle at depth. A 3D transpressive flow affected mylonites locally near the fault, but their shear direction remained parallel to plate motion, ruling out ductile 'extrusion' as an important process in this orogen. Outside the mylonite zone, late Cenozoic shortening is inferred to be modest (30-40%), as measured from deformation of younger biotite grains. Oblique collision is dominated by translation on the Alpine Fault, and rocks migrate rapidly through the deforming zone, preventing the accumulation of large finite strains. Transpression may play a minor role in oblique collision. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Sonic Hedgehog is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. Disruption of the Hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. The identification of genes regulated by Hedgehog is crucial to understanding how disruption of this pathway leads to neoplastic transformation. We have used a Sonic Hedgehog (Shh) responsive mouse cell line, C3H/10T1/2, to provide a model system for hedgehog target gene discovery. Following activation of cell cultures with Shh, RNA was used to interrogate microarrays to investigate downstream transcriptional consequences of hedgehog stimulation. As a result 11 target genes have been identified, seven of which are induced (Thrombomodulin, GILZ, BF-2, Nr4a1, IGF2, PMP22, LASP1) and four of which are repressed (SFRP-1, SFRP-2, Mip1-gamma, Amh) by Shh. These targets have a diverse range of putative functions and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery.
Resumo:
Members of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord. We show that both proteins are expressed by a distinct subpopulation of ventral interneurons that share the same dorsoventral position as CHX10-positive V2 interneurons. However, no coexpression is observed between the two GATA proteins and CHX10. By in vivo notochord grafting and cyclopamine treatment, we demonstrate that the spatially restricted pattern of GATA3 expression is regulated, at least in part, by the signaling molecule Sonic hedgehog. In addition, we further show that Sonic hedgehog induces GATA3 expression in a dose-dependent manner. Using in ovo electroporations, we also demonstrate that GATA2 is upstream of GATA3 in the same epigenetic cascade and that GATA3 is capable of inducing GATA2 expression in vivo. Furthermore, the ectopically expressed GATA proteins can repress differentiation of other ventral cell fates, but not the development of progenitor populations identified by PAX protein expression. Taken together, our findings strongly suggest an important role for GATA2 and GATA3 proteins in the establishment of a distinct ventral interneuron subpopulation in the developing chick spinal cord. (C) 2002 Elsevier Science (USA).
Resumo:
We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.