205 resultados para Partial gene cloning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell surface mucins are complex glycoproteins expressed on the apical membrane surface of mucosal epithelial cells. In malignant epithelial cells they are thought to influence cell adhesion, and are clinical targets for tumor immunotherapy and serum tumor marker assays. We have compared expression of MUC1, MUC3, MUC4, MUC11, MUC12 and MUC13 mRNA in epithelial cancers and/or cell lines with non-malignant tissues. In non-malignant tissues, MUC3, 4, 11, 12 and 13 were expressed at highest levels in gastrointestinal tissues, whereas MUC1 was more widely distributed. Significant down-regulation of the MUC4, MUC12 and MUC13 genes was observed in colonic cancers compared with normal tissue, whereas MUC1 was upregulated. In rectal cancers, levels of all six mucin genes were not significantly different to those in normal rectal tissues. Both MUC1 and MUC4 were down-regulated in gastric cancers, whereas cancer and normal tissue levels were similar for MUC3, 11, 12 and 13. In esophageal cancers there was a general trend toward higher levels than in normal tissue for MUC1, 3, 12 and 13. In ovarian cancers MUC1 levels were very high, whereas only low levels of all other mucins were observed. We also report expression in renal cell carcinomas, bladder carcinomas and breast cancer cell lines. The reported expression profiles of the cell surface mucin gene family will help direct biological and clinical studies of these molecules in mucosal biology, and in malignant and inflammatory diseases of epithelial tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohol dependence may result from neuroadaptation involving alteration of gene expression after long-term alcohol exposure. The systematic study of gene expression profiles of the human alcoholic brain was initiated using the method of polymerase chain reaction (PCR)-differential display and was followed by DNA microarray. To date, more than 100 alcohol-responsive genes have been identified from the frontal cortex, motor cortex and nucleus accumbens of the human brain. These genes have a wide range of functions in the brain and indicate diverse actions of alcohol on neuronal function. This review discusses the current information on the genetic basis of alcoholism and the induction and characterization of these alcohol-responsive genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The I-3 gene from the wild tomato species Lycopersicon pennellii confers resistance to race 3 of the devastating vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. As an initial step in a positional cloning strategy for the isolation of I-3, we converted restriction fragment length polymorphism and conserved orthologue set markers, known genes and a resistance gene analogue (RGA) mapping to the I-3 region into PCR-based sequence characterised amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers. Additional PCR-based markers in the I-3 region were generated using the randomly amplified DNA fingerprinting (RAF) technique. SCAR, CAPS and RAF markers were used for high-resolution mapping around the I-3 locus. The I-3 gene was localised to a 0.3-cM region containing a RAF marker, eO6, and an RGA, RGA332. RGA332 was cloned and found to correspond to a putative pseudogene with at least two loss-of-function mutations. The predicted pseudogene belongs to the Toll interleukin-1 receptor-nucleotide-binding site-leucine-rich-repeat sub-class of plant disease resistance genes. Despite the presence of two RGA332 homologues in L. esculentum, DNA gel blot and PCR analysis suggests that no other homologues are present in lines carrying I-3 that could be alternative candidates for the gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K-M for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0 +/- 0.7, suggesting a Na+:SO42- stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate plays an essential role in human growth and development. Here, we characterized the functional properties of the human Na+-sulfate cotransporter (hNaS2), determined its tissue distribution, and identified its gene (SLC13A4) structure. Expression of hNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by thiosulfate, phosphate, molybdate. selenate and tungstate, but not by oxalate, citrate, succinate, phenol red or DIDS. Transport kinetics of hNaS2 determined a K, for sulfate of 0.38 mM, suggestive of a high affinity sulfate transporter. Na+ kinetics determined a Hill coefficient of 1.6 +/- 0.6, suggesting a Na: SO42- stoichiometry of 2:1. hNaS2 mRNA was highly expressed in placenta and testis, with intermediate levels in brain and lower levels found in the heart, thymus, and liver. The SLC13A4 gene contains 16 exons, spanning over 47 kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs, and a number of putative transcription factor binding sites, including GATA-1, AP-1, and AP-2 consensus sequences. This is the first study to characterize hNaS2 transport kinetics, define its tissue distribution, and resolve its gene (SLC13A4) structure and 5' flanking region. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohol dependence is characterized by tolerance, physical dependence, and craving. The neuroadaptations underlying these effects of chronic alcohol abuse are likely due to altered gene expression. Previous gene expression studies using human post-mortem brain demonstrated that several gene families were altered by alcohol abuse. However, most of these changes in gene expression were small. It is not clear if gene expression profiles have sufficient power to discriminate control from alcoholic individuals and how consistent gene expression changes are when a relatively large sample size is examined. In the present study, microarray analysis (similar to 47 000 elements) was performed on the superior frontal cortex of 27 individual human cases ( 14 well characterized alcoholics and 13 matched controls). A partial least squares statistical procedure was applied to identify genes with altered expression levels in alcoholics. We found that genes involved in myelination, ubiquitination, apoptosis, cell adhesion, neurogenesis, and neural disease showed altered expression levels. Importantly, genes involved in neurodegenerative diseases such as Alzheimer's disease were significantly altered suggesting a link between alcoholism and other neurodegenerative conditions. A total of 27 genes identified in this study were previously shown to be changed by alcohol abuse in previous studies of human post-mortem brain. These results revealed a consistent re-programming of gene expression in alcohol abusers that reliably discriminates alcoholic from non-alcoholic individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The cysteinyl-leukotrienes (cys-LTs) are proinflammatory mediators that are important in the pathophysiology of asthma. LTC4 synthase is a key enzyme in the cys-LT biosynthetic pathway, and studies in small populations have suggested that a promoter polymorphism (A(-444)C) in the gene might be associated with asthma severity and aspirin intolerance. Objective: We sought to screen the LTC4 synthase gene for polymorphisms and to determine whether there is an association between these polymorphisms and asthma severity or aspirin sensitivity in a large, well-phenotyped population and to determine whether this polymorphism is functionally relevant. Methods: The coding regions of the LTC4 synthase gene were screened for polymorphisms and the A(-444)C polymorphism was analyzed in a large Australian white adult population of mild (n = 282), moderate (n = 236), and severe asthmatic subjects (n = 86) and nonasthmatic subjects (n = 458), as well as in aspirin-intolerant asthmatic subjects (n = 67). The functional activity of the promoter polymorphism was investigated by transient transfection of HL-60 cells with a promoter construct. Results: A new polymorphism was identified in intron 1 of the gene (IVS1-10c>a) but was not associated with asthma. Association studies showed that the A(-444)C polymorphism was weakly associated with asthma per se, but there was no association between the C-444 allele and chronic asthma severity or aspirin intolerance. A meta-analysis of all the genetic studies conducted to date found significant between-study heterogeneity in C-444 allele frequencies within different clinical subgroups. In vitro functional studies showed no significant differences in transcription efficiency between constructs containing the A(-444) allele or the C-444 allele. Conclusions: Our data confirm that, independent of transcriptional activity, the C-444 allele in the LTC4 synthase gene is weakly associated with the asthma phenotype, but it is not related to disease severity or aspirin intolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GH receptor (GHR) is essential for normal postnatal growth and development, and the molecular basis of GHR action has been studied intensively. Clinical case studies and more recently mouse models have revealed the extensive phenotype of impaired GH action. We recently reported two new mouse models, possessing cytoplasmic truncations at position 569 (plus Y539/545-F) and 391, which were created to identify functional subdomains within the cytoplasmic signaling domain. In the homozygous state, these animals show progressively impaired postnatal growth coupled with complex changes in gene expression. We describe here an extended phenotype analysis encompassing the heterozygote state to identify whether single copies of these mutant receptors bring about partial or dominant-negative phenotypes. It appears that the retention of the ubiquitin-dependent endocytosis motif the N-terminal cytoplasmic domain permits turnover of these mutant receptors because no dominant-negative phenotype is seen. Nonetheless, we do observe partial impairment of postnatal growth in heterozygotes supporting limited haploinsufficiency. Reproductive function is impaired in these models in a progressive manner, in parallel with loss of signal transducer and activator of transcription-5 activation ability. In summary, we describe a more comprehensive phenotypic analysis of these mouse models, encompassing overall and longitudinal body growth, reproductive function, and hormonal status in both the heterozygote and homozygote state. Our results suggest that patients expressing single copies of similarly mutated GHRs would not display an obvious clinical phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three human SULT1A sulfotransferase enzymes are closely related in amino acid sequence (>90%), yet differ in their substrate preference and tissue distribution. SULT1A1 has a broad tissue distribution and metabolizes a range of xenobiotics as well as endogenous substrates such as estrogens and iodothyronines. While the localization of SULT1A2 is poorly understood, it has been shown to metabolize a number of aromatic amines. SULT1A3 is the major catecholamine sulfonating form, which is consistent with it being expressed principally in the gastrointestinal tract. SULT1A proteins are encoded by three separate genes, located in close proximity to each other on chromosome 16. The presence of differential 5′-untranslated regions identified upon cloning of the SULT1A cDNAs suggested the utilization of differential transcriptional start sites and/or differential splicing. This chapter describes the methods utilized by our laboratory to clone and assay the activity of the promoters flanking these different untranslated regions found on SULT1A genes. These techniques will assist investigators in further elucidating the differential mechanisms that control regulation of the human SULT1A genes. They will also help reveal how different cellular environments and polymorphisms affect the activity of SULT1A gene promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As resistance genes have been shown to contain conserved motifs and cluster in many plant genomes, the identification of resistance gene analogues can be used as a strategy for both the discovery of DNA markers linked to disease resistance loci and the map-based cloning of disease resistance genes. Sugarcane suffers from many important diseases and an analysis of resistance gene analogues offers a means to identify DNA markers linked to resistance loci. However, sugarcane has the most complex genome of any crop plant and initially it is important to understand the extent of resistance gene analogue diversity in the sugarcane genome before genetic analysis. We review herein how more than 100 expressed sequence tags with homology to different resistance genes have been identified in sugarcane with many mapped as single-dose restriction fragment length polymorphism markers. Importantly, some of these resistance gene analogues have been shown to be linked to disease resistance genes or disease quantitative trait loci. In an attempt to more efficiently analyse additional resistance gene analogues in sugarcane, we report on experiments aimed at investigating the molecular diversity of several resistance gene analogue families using a modified form of a technique termed Ecotilling. Using Ecotilling, we were able to rapidly detect single nucleotide polymorphisms in fragments amplified by PCR from four different resistance gene analogue families, SoRP1D, SoPTO, SoXa21 and SoHs1pro-1. An analysis of a diverse set of sugarcane varieties, including modern sugarcane cultivars and several S. officinarum and S. spontaneum clones, indicated that all amplicons, apart from SoHs1pro-1, contained significant polymorphism within the gene region studied. However, a comparison among these sugarcane clones, including between the parents of two sugarcane mapping populations, indicated that most polymorphisms were multi-dose, not single-dose, preventing their genetic map location or association with disease susceptibility or resistance from being determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclectide sequence for pituitary prolactin cDNA from the marsupial bandicoot (Isoodon macrourus) was determined by reverse transcription-polymerase chain reaction and 5'/3' rapid amplification of cDNA ends. The deduced amino acid sequence showed high sequence identity with brushtail possum prolactin (95%) and all of the expected structural features of a quadruped prolactin. A prolactin gene tree was constructed and rates of evolution calculated for bandicoot, possum, opossum and several mammalian and non-mammalian prolactins. Bootstrap analysis provided strong support for marsupials as a sister group with eutherian mammals and weak support for opossum and bandicoot as an independent grouping from the brushtail possum. The rates of molecular evolution for marsupial prolactins were comparable to the slow rate seen in the majority of quadruped prolactins that have been sequenced. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigenic variation in Plasmodium falciparum erythrocyte membrane protein 1, caused by a switch in transcription of the encoding var gene, is an important feature of malaria. In this study, we quantified the relative abundance of var gene transcripts present in P. falciparum parasite clones using real-time reverse transcription-polymerase chain reaction (RT-PCR) and conventional RT-PCR combined with cloning and sequencing, with the aim of directly comparing the results obtained. When there was sufficient abundance of RNA for the real-time RT-PCR assay to be operating within the region of good reproducibility, RT-PCR and real-time RT-PCR tended to identify the same dominant transcript, although some transcript-specific issues were identified. When there were differences in the estimated relative amounts of minor transcripts, the RT-PCR assay tended to produce higher estimates than real-time RT-PCR. These results provide valuable information comparing RT-PCR and real-time RT-PCR analysis of samples with small quantities of RNA as might be expected in the analysis of field or clinical samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene content of a mitochondrial (mt) genome, i.e., 37 genes and a large noncoding region (LNR), is usually conserved in Metazoa. The arrangement of these genes and the LNR is generally conserved at low taxonomic levels but varies substantially at high levels. We report here a variation in mt gene content and gene arrangement among chigger mites of the genus Leptotrombidium. We found previously that the mt genome of Leptotrombidium pallidum has an extra gene for large-subunit rRNA (rrnL), a pseudo-gene for small-subunit rRNA (PrrnS), and three extra LNRs, additional to the 37 genes and an LNR typical of Metazoa. Further, the arrangement of mt genes of L. pallidum differs drastically from that of the hypothetical ancestor of the arthropods. To find to what extent the novel gene content and gene arrangement occurred in Leptotrombidium, we sequenced the entire or partial mt genomes of three other species, L. akamushi, L. deliense, and L. fletcheri. These three species share the arrangement of all genes with L. pallidum, except trnQ (for tRNA-glutamine). Unlike L. pallidum, however, these three species do not have extra rrnL or PrrnS and have only one extra LNR. By comparison between Leptotrombidium species and the ancestor of the arthropods, we propose that (1) the type of mt genome present in L. pallidum evolved from the type present in the other three Leptotrombidium species, and (2) three molecular mechanisms were involved in the evolution of mt gene content and gene arrangement in Leptotrombidium species.