76 resultados para POPULATION-SIZE
Resumo:
Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein concentration, seed oil concentration, seed size, plant height, lodging, and maturity, in a population from a cross between the soybean cultivars 'Essex' and 'Williams.' DNA was extracted from F-2 generation soybean leaves and amplified via polymerase chain reaction (PCR) using simple sequence repeat (SSR) markers. Markers that were polymorphic between the parents were analyzed against phenotypic trait data from the F-2 and F-4:6 generation. For the F-2 population, significant additive QTL were Satt540 (MLG M, maturity, r(2)=0.11; height, r(2)=0.04, seed size, r(2)=0.061, Satt373 (MLG L, seed size, r(2)=0.04; height, r(2)=0.14), Satt50 (MLG A1, maturity r(2)=0.07), Satt14 (MLG D2, oil, r(2)=0.05), and Satt251 (protein r(2)=0.03, oil, r(2)=0.04). Significant dominant QTL for the F-2 population were Satt540 (MLG M, height, r(2)=0.04; seed size, r(2)=0.06) and Satt14 (MLG D2, oil, r(2)=0.05). In the F-4:6 generation significant additive QTL were Satt239 (MLG I, height, r(2)=0.02 at Knoxville, TN and r(2)=0.03 at Springfield, TN), Satt14 (MLG D2, seed size, r(2)=0.14 at Knoxville, TN), Satt373 (MLG L, protein, r(2)=0.04 at Knoxville, TN) and Satt251 (MLG B I, lodging r(2)=0.04 at Springfield, TN). Averaged over both environments in the F-4:6 generation, significant additive QTL were identified as Satt251 (MLG B 1, protein, r(2)=0.03), and Satt239 (MLG 1, height, r(2)=0.03). The results found in this study indicate that selections based solely on these QTL would produce limited gains (based on low r(2) values). Few QTL were detected to be stable across environments. Further research to identify stable QTL over environments is needed to make marker-assisted approaches more widely adopted by soybean breeders.
Resumo:
The extent to which density-dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density-dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long-term dataset on the distribution of ticks among individual hosts. If density-dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host-parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re-analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density-dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population-scale increase in the aggregation coefficient is indirect evidence of a density-dependent process or processes sufficiently strong to produce a population-wide pattern, and thus also likely to influence population regulation. The direct observation of a density-dependent process is evidence of at least part of the responsible mechanism.
Resumo:
A new wavelet-based adaptive framework for solving population balance equations (PBEs) is proposed in this work. The technique is general, powerful and efficient without the need for prior assumptions about the characteristics of the processes. Because there are steeply varying number densities across a size range, a new strategy is developed to select the optimal order of resolution and the collocation points based on an interpolating wavelet transform (IWT). The proposed technique has been tested for size-independent agglomeration, agglomeration with a linear summation kernel and agglomeration with a nonlinear kernel. In all cases, the predicted and analytical particle size distributions (PSDs) are in excellent agreement. Further work on the solution of the general population balance equations with nucleation, growth and agglomeration and the solution of steady-state population balance equations will be presented in this framework. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In a previous paper, Hoornaert et al. (Powder Technol. 96 (1998); 116-128) presented data from granulation experiments performed in a 50 L Lodige high shear mixer. In this study that same data was simulated with a population balance model. Based on an analysis of the experimental data, the granulation process was divided into three separate stages: nucleation, induction, and coalescence growth. These three stages were then simulated separately, with promising results. it is possible to derive a kernel that fit both the induction and the coalescence growth stage. Modeling the nucleation stage proved to be more challenging due to the complex mechanism of nucleus formation. From this work some recommendations are made for the improvement of this type of model.
Resumo:
Differences between island- and mainland-dwelling forms provide several classic ecological puzzles. Why, for instance, are island-dwelling passerine birds consistently larger than their mainland counterparts? We examine the 'Dominance hypothesis', based on intraspecific competition, which states that large size in island passerines evolves through selection for success in agonistic encounters. We use the Heron Island population of Capricorn silvereyes (Zosterops lateralis chlorocephalus), a large-bodied island-dwelling race of white-eye (Zosteropidae), to test three assumptions of this hypothesis; that (i) large size is positively associated with high fitness, (ii) large size is associated with dominance, and (iii) the relationship between size and dominance is particularly pronounced under extreme intraspecific competition. Our results supported the first two of these assumptions, but provided mixed evidence on the third. On balance, we suggest that the Dominance Hypothesis is a plausible mechanism for the evolution of large size of island passerines, but urge further empirical tests on the role of intraspecific competition on oceanic islands versus that on mainlands.
Resumo:
Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.
Resumo:
Genetic diversity and population structure were investigated across the core range of Tasmanian devils (Sarcophilus laniarius; Dasyuridae), a wide-ranging marsupial carnivore restricted to the island of Tasmania. Heterozygosity (0.386-0.467) and allelic diversity (2.7-3.3) were low in all subpopulations and allelic size ranges were small and almost continuous, consistent with a founder effect. Island effects and repeated periods of low population density may also have contributed to the low variation. Within continuous habitat, gene flow appears extensive up to 50 km (high assignment rates to source or close neighbour populations; nonsignificant values of pairwise F-ST), in agreement with movement data. At larger scales (150-250 km), gene flow is reduced (significant pairwise F-ST) but there is no evidence for isolation by distance. The most substantial genetic structuring was observed for comparisons spanning unsuitable habitat, implying limited dispersal of devils between the well-connected, eastern populations and a smaller northwestern population. The genetic distinctiveness of the northwestern population was reflected in all analyses: unique alleles; multivariate analyses of gene frequency (multidimensional scaling, minimum spanning tree, nearest neighbour); high self-assignment (95%); two distinct populations for Tasmania were detected in isolation by distance and in Bayesian model-based clustering analyses. Marsupial carnivores appear to have stronger population subdivisions than their placental counterparts.
Resumo:
Objectives: This pilot study describes a modelling approach to translate group-level changes in health status into changes in preference values, by using the effect size (ES) to summarize group-level improvement. Methods: ESs are the standardized mean difference between treatment groups in standard deviation (SD) units. Vignettes depicting varying severity in SD decrements on the SF-12 mental health summary scale, with corresponding symptom severity profiles, were valued by a convenience sample of general practitioners (n = 42) using the rating scale (RS) and time trade-off methods. Translation factors between ES differences and change in preference value were developed for five mental disorders, such that ES from published meta-analyses could be transformed into predicted changes in preference values. Results: An ES difference in health status was associated with an average 0.171-0.204 difference in preference value using the RS, and 0.104-0.158 using the time trade off. Conclusions: This observed relationship may be particular to the specific versions of the measures employed in the present study. With further development using different raters and preference measures, this approach may expand the evidence base available for modelling preference change for economic analyses from existing data.
Resumo:
Optical metallographic techniques for grain-size measurement give unreliable results for high pressure diecast Mg-Al alloys and electron back-scattered diffraction mapping (EBSD) provides a good tool for improving the quality of these measurements. An application of EBSD mapping to this question is described, and data for some castings are presented. Ion-beam milling was needed to prepare suitable samples, and this technique is detailed. As is well-known for high pressure die castings, the grain size distribution comprises at least two populations. The mean grain size of the fine-grained population was similar in both AZ91 and AM60 and in two casting thicknesses (2 mm and 5 mm) and, contrary to previously published reports, it did not vary with depth below the surface.
Resumo:
The prevalence of obesity in the western world is dramatically rising, with many of these individuals requiring therapeutic intervention for a variety of disease states. Despite the growing prevalence of obesity there is a paucity of information describing how doses should be adjusted, or indeed whether they need to be adjusted, in the clinical setting. This review is aimed at identifying which descriptors of body size provide the most information about the relationship between dose and concentration in the obese. The size descriptors, weight, lean body weight, ideal body weight, body surface area, body mass index, fat-free mass, percent ideal body weight, adjusted body weight and predicted normal body weight were considered as potential size descriptors. We conducted an extensive review of the literature to identify studies that have assessed the quantitative relationship between the parameters clearance (CL) and volume of distribution (V) and these descriptors of body size. Surprisingly few studies have addressed the relationship between obesity and CL or V in a quantitative manner. Despite the lack of studies there were consistent findings: (i) most studies found total body weight to be the best descriptor of V. A further analysis of the studies that have addressed V found that total body weight or another descriptor that incorporated fat mass was the preferred descriptor for drugs that have high lipophilicity; (ii) in contrast, CL was best described by lean body mass and no apparent relationship between lipophilicity or clearance mechanism and preference for body size descriptor was found. In conclusion, no single descriptor described the influence of body size on both CL and V equally well. For drugs that are dosed chronically, and therefore CL is of primary concern, dosing for obese patients should not be based on their total weight. If a weight-based dose individualization is required then we would suggest that chronic drug dosing in the obese subject should be based on lean body weight, at least until a more robust size descriptor becomes available.
Resumo:
Ochlerotatus notoscriptus (Skuse) (Diptera: Culicidae) is the predominant peridomestic mosquito in Australia where it is the primary vector of dog heartworm, Dirofilaria immitis (Leidy), and a potentially important vector of arboviruses (Barmah Forest, Ross River) with geographical variation of vector competence. Although widespread, Oc. notoscriptus has low dispersal ability, so it may have isolated subpopulations. The identification of gene flow barriers may assist in understanding arbovirus epidemiology and disease risk, and for developing control strategies for this species. We investigated the population structure of Oc. notoscriptus from 17 sites around Australia, using up to 31 putative allozyme loci, 11 of which were polymorphic. We investigated the effect of larval environment and adult morphology on genetic variation. At least five subpopulations were found, four in New South Wales (NSW) and one unique to Darwin. Perth samples appear to be a product of recent colonization from the Australian east coast. For NSW sites, a Mantel test revealed an isolation by distance effect and spatial autocorrelation analysis revealed an area of effective gene flow of 67 km, which is high given the limited dispersal ability of this species. No consistent difference was observed between 'urban' and 'sylvan' habitats, which suggests frequent movement between these sites. However, a finer-scaled habitat study at Darwin revealed small but significant allele frequency differences, including for Gpi. No fixed allozyme differences were detected for sex, size, integument colour or the colour of species-diagnostic pale scales on the scutum. The domestic habit of Oc. notoscriptus and assisted dispersal have helped to homogenize this species geographically but population structure is still detectable on several levels associated with geographical variation of vector competence.
Resumo:
From June 1995 to August 2002 we assessed green turtle (Chelonia mydas) population structure and survival, and identified human impact, at Bahia de los Angeles, a large bay that was once the site of the greatest sea turtle harvest rates in the Gulf of California, Mexico. Turtles were captured live with entanglement nets and mortality was quantified through stranding surveys and flipper tag recoveries. A total of 14,820 netting hours (617.5 d) resulted in 255 captures of 200 green turtles. Straight-carapace length and mass ranged from 46.0-100.0 cm (mean = 74.3 +/- 0.7 cm) and 14.5-145.0 kg (mean = 61.5 +/- 1.7 kg), respectively. The size-frequency distribution remained stable during all years and among all capture locations. Anthropogenic-derived injuries ranging from missing flippers to boat propeller scars were present in 4% of captured turtles. Remains of 18 turtles were found at dumpsites, nine stranded turtles were encountered in the study area, and flipper tags from seven turtles were recovered. Survival was estimated at 0.58 for juveniles and 0.97 for adults using a joint live-recapture and dead-recovery model (Burnham model). Low survival among juveniles, declining annual catch per unit effort, and the presence of butchered carcasses indicated human activities continue to impact green turtles at this foraging area.
Resumo:
We provide a general framework for estimating persistence in populations which may be affected by catastrophic events, and which are either unbounded or have very large ceilings. We model the population using a birth-death process modified to allow for downward jumps of arbitrary size. For such processes, it is typically necessary to truncate the process in order to make the evaluation of expected extinction times (and higher-order moments) computationally feasible. Hence, we give particular attention to the selection of a cut-off point at which to truncate the process, and we present a simple method for obtaining quantitative indicators of the suitability of a chosen cut-off. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The leatherback turtle Dermochelys coriacea is considered to be at serious risk of global extinction, despite ongoing conservation efforts. Intensive long-term monitoring of a leatherback nesting population on Sandy Point (St. Croix, US Virgin Islands) offers a unique opportunity to quantify basic population parameters and evaluate effectiveness of nesting beach conservation practices. We report a significant increase in the number of females nesting annually from ca. 18-30 in the 1980s to 186 in 2001, with a corresponding increase in annual hatchling production from ca. 2000 to over 49,000. We then analyzed resighting data from 1991 to 2001 with an open robust-design capture-mark-recapture model to estimate annual nester survival and adult abundance for this population. The expected annual survival probability was estimated at ca. 0.893 (95% CL 0.87-0.92) and the population was estimated to be increasing ca. 13% pa since the early 1990s. Taken together with DNA fingerprinting that identify mother-daughter relations, our findings suggest that the increase in the size of the nesting population since 1991 was probably due to an aggressive program of beach protection and egg relocation initiated more than 20 years ago. Beach protection and egg relocation provide a simple and effective conservation strategy for this Northern Caribbean nesting population as long as adult survival at sea remains relatively high. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.