194 resultados para PHYSICS, MULTIDISCIPLINARY
Resumo:
The concept of local concurrence is used to quantify the entanglement between a single qubit and the remainder of a multiqubit system. For the ground state of the BCS model in the thermodynamic limit the set of local concurrences completely describes the entanglement. As a measure for the entanglement of the full system we investigate the average local concurrence (ALC). We find that the ALC satisfies a simple relation with the order parameter. We then show that for finite systems with a fixed particle number, a relation between the ALC and the condensation energy exposes a threshold coupling. Below the threshold, entanglement measures besides the ALC are significant.
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
We present an algebraic Bethe ansatz for the anisotropic supersymmetric U model for correlated electrons on the unrestricted 4(L)-dimensional electronic Hilbert space x(n=l)(L)C(4)(where L is the lattice length). The supersymmetry algebra of the local Hamiltonian is the quantum superalgebra U-q[gl(2\1)] and the model contains two symmetry-preserving free real parameters; the quantization parameter q and the Hubbard interaction parameter U. The parameter U arises from the one-parameter family of inequivalent typical four-dimensional irreps of U-q[gl(2\1)]. Eigenstates of the model are determined by the algebraic Bethe ansatz on a one-dimensional periodic lattice.
Resumo:
We present results from both theoretical and experimental studies of the noise characteristics of mode-locked superfluorescent lasers. The results show that observed macroscopic broadband amplitude noise on the laser pulse train has its origin in quantum noise-initiated ''phase-wave'' fluctuations, and we find an associated phase transition in the noise characteristics as a function of laser cavity detuning.
Resumo:
A fully explicit formula for the eigenvalues of Casimir invariants for U-q(gl(m/n)) is given which applies to all unitary irreps. This is achieved by making some interesting observations on atypicality indices for irreps occurring in the tensor product of unitary irreps of the same type. These results have applications in the determination of link polynomials arising from unitary irreps of U-q(gl(m/n)).
Resumo:
We present a general prescription for the construction of integrable one-dimensional systems with closed boundary conditions and quantum supersymmetry.
Resumo:
Simultaneous solitary wave solutions for laser propagation in nonlinear parametric media with up to (3 + 1) dimensions are proved to exist. The combination of the large dispersion of a Bragg grating and the strong nonlinearity of chi((2)) optical material results in stable behavior with short interaction distances and low power requirements. The solutions are obtained by using the effective mass approximation to reduce the coupled propagation equations to those describing a dispersive parametric nonlinear waveguide, and are verified by solving the complete set of coupled band-gap equations numerically.
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.
Resumo:
We have developed a sensitive resonant four-wave mixing technique based on two-photon parametric four-wave mixing with the addition of a phase matched ''seeder'' field. Generation of the seeder field via the same four-wave mixing process in a high pressure cell enables automatic phase matching to be achieved in a low pressure sample cell. This arrangement facilitates sensitive detection of complex molecular spectra by simply tuning the pump laser. We demonstrate the technique with the detection of nitric oxide down to concentrations more than 4 orders of magnitude below the capability of parametric four-wave mixing alone, with an estimated detection threshold of 10(12) molecules/cm(3).
Resumo:
We introduce the super-Yangian double DY(h over bar), [gl(m/n)] and its central extension DY(h over bar)[gl(m/n)]. We give their defining relations in terms of current generators and obtain Drinfeld co-multiplication. (C) 1997 Elsevier Science B.V.
Resumo:
We propose a simple modification of the experimental scheme employed by Brune rt ni. [Phys. Rev. Lett. 79, 4887 (1996)] for the generation and detection of a Schrodinger cat state, in which the decoherence of the cat state can be significantly slowed down using an appropriate feedback.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.
Resumo:
By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain the Drinfeld current realization for the quantum affine superalgebra U-q[gl(m\n)((1))]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.
Resumo:
Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method.