110 resultados para PARAMETRIC-INSTABILITIES
Resumo:
A numerical model of heat transfer in fluidized-bed coating of solid cylinders is presented. By defining suitable dimensionless parameters, the governing equations and its associated initial and boundary conditions are discretized using the method of orthogonal collocation and the resulting ordinary differential equations simultaneously solved for the dimensionless coating thickness and wall temperatures. Parametric Studies showed that the dimensionless coating thickness and wall temperature depend on the relative heat capacities of the polymer powder and object, the latent heat of fusion and the size of the cylinder. Model predictions for the coating thickness and wall temperature compare reasonably well with numerical predictions and experimental coating data in the literature and with our own coating experiments using copper cylinders immersed in nylon-11 and polyethylene powders. (C) 2001 Elsevier Science Ltd. All rights reserved.
Gender differences in the relationship between depression and suicidal ideation in young adolescents
Resumo:
Objective: This study examined the risk relationship between depressive symptomatology and suicidal ideation for young adolescent males and females. Method: A large cohort of students in their first year of high school completed the Center for Epidemiological Studies Depression Scale (CES-D) and the Adolescent Suicide Questionnaire. The risk relationship between depressive symptomatology and suicidal ideation was modelled using non-parametric kernel-smoothing techniques. Results: Suicidal ideation was more frequently reported by females compared with males which was partly explained by females having higher mean depression scores. At moderate levels of depression females also had a significantly higher risk of suicidal ideation compared with males and this increased risk contributed to the overall higher levels of female ideation. Conclusions: The risk relationship between depressive symptomatology and suicidal ideation is different for young adolescent males and females. The results indicate that moderate levels of depressive symptomatology can be associated with suicidal ideation (especially among young females) and that for these young people a suicide risk assessment is required.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.
Resumo:
We investigate the utility of nonclassical states of simple harmonic oscillators, particularly a superposition of coherent states, for sensitive force detection. We find that like squeezed states, a superposition of coherent states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single-mode superposition state with the same mean photon number.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
This paper reports a parametric investigation and development of grinding technologies for micro aspherical mould inserts using parallel grinding method. The parametric investigation revealed that at nanometric scale the undeformed chip thickness has little influence on the surface finish of ground inserts. The grinding trace spacing has a slightly larger influence on the surface finish. A new technique was developed to true and dress the resin bonded micro wheels with mesh size of #3000, which produced a satisfactory wheel form accuracy and relatively high grain packing density. A form error compensation technique was also developed, with which mould inserts of submicron form accuracy were consistently produced. Using the developed technologies, micro aspherical inserts of diameters ranging from 200 mu m to 1000 mu m with surface finish of around 10 nm and form error of similar to 0.2-0.4 mu m were successfully fabricated. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.
Resumo:
We consider the case of two cavity modes of the electromagnetic field, which are coupled via the action of a parametric amplifier. The fields are allowed to leak from the cavity and homodyne measurement is performed on one of the modes. Because of the correlations between the modes, this leads to a reduction of the variance in a quadrature of the other mode, although no measurement is performed on it directly. We discuss how this relates to the Einstein-Podolky-Rosen Gedankenexperiment.
Resumo:
Biologic valve re-replacement was examined in a series of 1343 patients who underwent aortic valve replacement at The Prince Charles Hospital, Brisbane, with a cryopreserved or 4 degrees C stored allograft valve or a xenograft valve, A parametric model approach was used to simultaneously model the competing risks of death without re-replacement and re-replacement before death, One hundred eleven patients underwent a first re-replacement for a variety of reasons (69 patients with xenograft valves, 28 patients with 4 degrees C stored allograft valves, and 14 patients with cryopreserved allograft valves), By multivariable analysis younger age at operation was associated with xenograft, 4 degrees C stored allograft, and cryopreserved allograft valve re-replacement, However, this effect was examined in the context of longer survival of younger patients, which increases their exposure to the risk of re-replacement as compared with that in older patients whose decreased survival reduced their probability of requiring valve re-replacement, In patients older than 60 years at the time of aortic valve replacement, the probability of re-replacement (for any reason) before death was similar for xenografts and cryopreserved allograft valves but higher for 4 degrees C stored valves, However, in patients younger than 60 years, the probability of re-replacement at any time during the remainder of the life of the patient was lower with the cryopreserved allograft valve compared with the xenograft valve and 4 degrees C stored allografts.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
Izenman and Sommer (1988) used a non-parametric Kernel density estimation technique to fit a seven-component model to the paper thickness of the 1872 Hidalgo stamp issue of Mexico. They observed an apparent conflict when fitting a normal mixture model with three components with unequal variances. This conflict is examined further by investigating the most appropriate number of components when fitting a normal mixture of components with equal variances.
Resumo:
We report the observation of the quantum effects of competing chi((2)) nonlinearities. We also report classical signatures of competition, namely, clamping of the second-harmonic power and production of nondegenerate frequencies in the visible. Theory is presented that describes the observations as resulting from competition between various chi((2)) up-conversion and down-conversion processes. We show that competition imposes hitherto unsuspected limits to both power generation and squeezing. The observed signatures are expected to be significant effects in practical systems.