113 resultados para Optical-lattice potential
Resumo:
Arbuscular mycorrhizae are symbiotic associations among glomalean fungi and plant roots that often lead to enhanced water and nutrient uptake and plant growth. We describe experiments to test whether inoculum potential of arbuscular mycorrhizal (AM) fungal communities varies spatially within a broadleaf temperate forest, and also whether there is variability in the effectiveness of AM fungal communities in enhancing seedling growth. Inoculum potential of arbuscular mycorrhizal fungi in a temperate broad-leaved forest did not vary significantly among sites. Inoculum potential, measured as the extent to which the roots of red maple seedlings that had been germinated on sterile sand and then transplanted into the forest, were colonized by AM fungi, was similar in floodplain and higher elevation sites. It was as similar under ectomycorrhizal oaks as it was under red maples and other AM tree species. It was also similar among sites with deciduous understory shrubs with arbuscular mycorrhizae (spicebush, Lindera benzoin) and those with evergreen vegetation with ericoid mycorrhizae (mountain laurel, Kalmia latifolia). Where spicebush was the dominant understory shrub, inoculum potential was greater under gaps in the canopy than within the understory. Survivorship of transplanted red maple seedlings varied significantly over sites but was not strongly correlated with measures of inoculum potential. In a greenhouse growth experiment, arbuscular mycorrhizal fungal communities obtained from tree roots from the forest had different effects on plant growth. Seedlings inoculated with roots of red maple had twice the leaf area after 10 wk of growth compared to the AM community obtained from roots of southern red oaks. Thus, although there appears to be little heterogeneity in inoculum potential in the forest, there are differences in the effectiveness of different inocula. These effects have the potential to affect tree species diversity in forests by modifying patterns of seedling recruitment.
Resumo:
The performance of three different techniques for determining proton rotating frame relaxation rates (T1pH) in charred and uncharred woods is compared. The variable contact time (VCT) experiment is shown to over-estimate T1pH, particularly for the charred samples, due to the presence of slowly cross-polarizing C-13 nuclei. The variable spin (VSL) or delayed contact experiment is shown to overcome these problems; however, care is needed in the analysis to ensure rapidly relaxing components are not overlooked. T1pH is shown to be non-uniform for both charred and uncharred wood samples; a rapidly relaxing component (T1pH = 0.46-1.07 ms) and a slowly relaxing component (T1pH = 3.58-7.49) is detected in each sample. T1pH for each component generally decreases with heating temperature (degree of charring) and the proportion of rapidly relaxing component increases. Direct T1pH determination (via H-1 detection) shows that all samples contain an even faster relaxing component (0.09-0.24 ms) that is virtually undetectable by the indirect (VCT and VSL) techniques. A new method for correcting for T1pH signal losses in spin counting experiments is developed to deal with the rapidly relaxing component detected in the VSL experiment. Implementation of this correction increased the proportion of potential C-13 CPMAS NMR signal that can be accounted for by up to 50% for the charred samples. An even greater proportion of potential signal can be accounted for if the very rapidly relaxing component detected in the direct T1pH determination is included; however, it must be kept in mind that this experiment also detects H-1 pools which may not be involved in H-1-C-13 cross-polarization. (C) 2002 Elsevier Science (USA).
Resumo:
The thalassinidean shrimp Trypea australiensis (the yabby) commonly occurs on intertidal sandflats and subtidal regions of sheltered embayments and estuaries along the east coast of Australia and is harvested commercially and recreationally for use as bait by anglers. The potential for counts of burrow openings to provide a reliable indirect estimate of the abundance of yabbies was examined on intertidal sandflats on North Stradbroke Island (Queensland, Australia). The relationship between the number of burrow openings and the abundance of yabbies was generally poor and also varied significantly through time, casting doubt on previous estimates of abundance for this species based on unvalidated hole counts. Spatial and temporal variation in population density, the size at maturity and the reproductive period of the yabby were also assessed. Except for an initial peak in abundance as a result of recruitment, the density of yabbies was constant throughout the study but considerably less than that estimated from a previous study in the same area. Ovigerous females were recorded at 3 mm carapace length (CL) which is smaller than previously recorded for this species and thalassinideans in general. Small ovigerous females were found throughout the study, including the summer months, which is unusual for thalassinideans in the intertidal zone. It was hypothesised that in the intertidal zone, small female yabbies may be able to balance the metabolic demands of reproduction and respiration at higher temperatures than can larger females allowing them to reproduce in the warmer months.
Resumo:
For many species of marine invertebrates, variability in larval settlement behaviour appears to be the rule rather than the exception. This variability has the potential to affect larval dispersal, because settlement behaviour will influence the length of time larvae are in the plankton. Despite the ubiquity and importance of this variability, relatively few sources of variation in larval settlement behaviour have been identified. One important factor that can affect larval settlement behaviour is the nutritional state of larvae. Non-feeding larvae often become less discriminating in their 'choice' of settlement substrate, i.e. more desperate to settle, when energetic reserves run low. We tested whether variation in larval size (and presumably in nutritional reserves) also affects the settlement behaviour of 3 species of colonial marine invertebrate larvae, the bryozoans Bugula neritina and Watersipora subtorquata and the ascidian Diplosoma listerianum. For all 3 species, larger larvae delayed settlement for longer in the absence of settlement cues, and settlement of Bugula neritina larvae was accelerated by the presence of settlement cues, independently of larval size. In the field, larger W subtorquata larvae also took longer to settle than smaller larvae and were more discriminating towards settlement surfaces. These differences in settlement time are likely to result in differences in the distance that larvae disperse in the field. We suggest that species that produce non-feeding larvae can affect the dispersal potential of their offspring by manipulating larval size and thus larval desperation.
Resumo:
Understanding the triggers for some cyanobacteria of the Nostocales and Stigonematales orders to produce specialised reproductive cells termed akinetes, is very important to gain further insights into their ecology. By improving our understanding of their life cycle, appropriate management options may be devised to control the formation of these cells, and therefore the potential bloom inoculum which they are thought to provide, may be reduced. This study investigated the effect of chemical (phosphorus limitation), and environmental variables (temperature shock) on akinete differentiation in the freshwater cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). From the preliminary results, it is suggested that the availability of phosphorus and changes in temperature were a necessary requirement for the formation of akinetes in this particular strain of C. raciborskii. In the four phosphorus treatments investigated (0, 3, 38 and 75 mug l(-1) P), only the two higher treatments produced akinetes (approximately 220 ml(-1)). When the first akinetes were observed in the 38 and 75 mug l(-1) P treatments, filterable reactive phosphorus (FRP) concentrations in the medium were approximately 22 and 52 mug l(-1) P, respectively, indicating that there was no phosphorus limitation. In the temperature shock experiment, akinetes were observed in the 15 and 20degreesC treatments. However, akinetes were degraded (pale yellow colour, limited swelling and shrivelled edges) and in much lower concentrations, which was thought to be a result of the daily temperature shock. We suggest that the formation of akinetes in C. raciborskii (AWT 205/1) can be triggered by an initial temperature shock and that phosphorus is a necessary requirement to allow further growth and full development of akinetes.
Resumo:
A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.
Resumo:
Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between yield and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially screen, in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts. (C) 2004 Wiley Periodicals, Inc.
Resumo:
This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.