243 resultados para Nicotinic Acetylcholine-receptor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An LC/MS analysis with diagnostic screening for the detection of peptides with posttranslational modifications revealed the presence of novel sulfated peptides within the -conotoxin molecular mass range in Conus anemone crude venom. A functional assay of the extract showed activity at several neuronal nicotinic acetylcholine receptors (nAChRs). Three sulfated alpha-conotoxins (AnIA, AnIB, and AnIC) were identified by LC/MS and assay-directed fractionation and sequenced after purification. The most active of these, alpha-AnIB, was further characterized and used to investigate the influence of posttranslational modifications on affinity. Synthetic AnIB exhibited subnanomolar potency at the rat alpha3/beta2 nAChR (IC50 0.3 nM) and was 200-fold less active on the rat alpha7 nAChR (IC50 76 nM). The unsulfated peptide [Tyr(16)]AnIB showed a 2-fold and 10-fold decrease in activities at alpha3beta2 (IC50 0.6 nM) and alpha7(IC50 836 nM) nAChR, respectively. Likewise, removal of the C-terminal amide had a greater influence on potency at the alpha7 (IC50 367 nM) than at the alpha3beta2 nAChR (IC50 0.5 nM). Stepwise removal of two N-terminal glycine residues revealed that these residues affect the binding kinetics of the peptide. Comparison with similar 4/7-alpha-conotoxin sequences suggests that residue 11 (alanine or glycine) and residue 14 (glutamine) constitute important determinants for alpha3beta2 selectivity, whereas the C-terminal amidation and sulfation at tyrosine-16 favor alpha7 affinity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phrenic nerve enters the diaphragm at approximately embryonic day 12.5 (E12.5) in the mouse. The secondary nerve trunk advances along the centre of the diaphragm muscle and extends tertiary branches primarily towards the lateral side during normal embryonic development. In the present study we quantified the intramuscular neurite branching in the most ventral region of the diaphragm at E15.5 and E18.5 in wild-type mice, agrin knock-out mice (KOAG) and rapsyn knock-out mice (KORAP). KOAG and KORAP have decreased muscle contraction due to their inability to maintain/form acetylcholine receptor (AChR) clusters during embryonic development. Heterozygote mothers were anaesthetised via an overdose of Nembutal (30 mg; Boeringer Ingelheim, Ridgefield, CT, USA) and killed via cervical dislocation. There were increases in the number of branches exiting the medial side of the phrenic nerve trunk in KOAG and KORAP compared to wild-type mice, but not on the lateral side at E15.5 and E18.5. However, the number of bifurcations in the periphery significantly increased on both the medial and lateral sides of the diaphragm at E15.5 and E18.5 in KOAG and KORAP compared to control mice. Furthermore, neurites extended further on both the medial and lateral sides of the diaphragm at E15.5 and E18.5 in KOAG and KORAP compared to wild-type mice. Together these results show that the restriction of neurite extension and bifurcations from the secondary nerve trunk is lost in both KOAG and KORAP allowing us the opportunity to investigate the factors that restrict motoneuron behaviour in mammalian muscles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Histidines 107 and 109 in the glycine receptor ( GlyR) alpha(1) subunit have previously been identified as determinants of the inhibitory zinc-binding site. Based on modeling of the GlyR alpha(1) subunit extracellular domain by homology to the acetylcholine-binding protein crystal structure, we hypothesized that inhibitory zinc is bound within the vestibule lumen at subunit interfaces, where it is ligated by His(107) from one subunit and His(109) from an adjacent subunit. This was tested by co-expressing alpha(1) subunits containing the H107A mutation with alpha(1) subunits containing the H109A mutation. Although sensitivity to zinc inhibition is markedly reduced when either mutation is individually incorporated into all five subunits, the GlyRs formed by the co-expression of H107A mutant subunits with H109A mutant subunits exhibited an inhibitory zinc sensitivity similar to that of the wild type alpha(1) homomeric GlyR. This constitutes strong evidence that inhibitory zinc is coordinated at the interface between adjacent alpha(1) subunits. No evidence was found for beta subunit involvement in the coordination of inhibitory zinc, indicating that a maximum of two zinc-binding sites per alpha(1)beta receptor is sufficient for maximal zinc inhibition. Our data also show that two zinc-binding sites are sufficient for significant inhibition of alpha(1) homomers. The binding of zinc at the interface between adjacent alpha(1) subunits could restrict intersubunit movements, providing a feasible mechanism for the inhibition of channel activation by zinc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel ( GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.