102 resultados para Multi-layering Adsorption
Resumo:
Adsorption and diffusion in a porous media were studied theoretically and experimentally with a differential transient permeation method. The porous medium is allowed to equilibrate at some specified loading, and then the time trajectory of the permeation process is followed after a small difference between the pressures at the end faces of the porous medium is introduced at time t = 0 +. Such a trajectory us. time would contain adsorption and diffusion characteristics of the system. By studying this for various surface loadings, pore and surface diffusions can be fully characterized. Mathematical modeling of transient permeation is detailed for pure gases or vapors diffusion and adsorption in porous media. Effects of nonlinearity of adsorption isotherm, pressure, temperature and heat effects were considered in the model. Experimental data of diffusion and adsorption of propane, n-butane and n-hexane in activated carbon at different temperatures and loadings show the potential of this method as a useful tool to study adsorption kinetics in porous media. Validity of the model is best tested against the transient data where the kinetics curves exhibit sigmoidal shape, which is a result of the diffusion and adsorption rate during the initial stage of permeation.
Resumo:
The Henry constant is commonly used as a measure of how strong an adsorbate is attracted towards a solid surface and is regarded as one of the fundamental parameters in adsorption studies. Having a sound basis in thermodynamics, the Henry Law is often used as a criterion to evaluate the validity of adsorption isotherm equations. However, the application of the Henry Law for microporous materials, especially microporous activated carbon, remains questionable. It is the aim of this paper to examine the Henry Law behavior of supercritical adsorbates in carbonaceous pores of different sizes, and to define the conditions for the Henry Law to be applicable for carbonaceous adsorbents.
Resumo:
In this paper, a new technique for predicting multicomponent adsorption equilibria of supercritical fluids in microporous carbons is presented. In difference from adsorption on a surface, which is a function of the fluid-solid interaction only, adsorption in porous media is influenced by the proximity of the pore walls, resulting in the enhancement in adsorption affinity. The degree of this enhancement is different for different adsorbates, and it increases with a decrease in pore size. The theory is applied to a number of carbonaceous systems with good success.
Resumo:
Five kinetic models for adsorption of hydrocarbons on activated carbon are compared and investigated in this study. These models assume different mass transfer mechanisms within the porous carbon particle. They are: (a) dual pore and surface diffusion (MSD), (b) macropore, surface, and micropore diffusion (MSMD), (c) macropore, surface and finite mass exchange (FK), (d) finite mass exchange (LK), and (e) macropore, micropore diffusion (BM) models. These models are discriminated using the single component kinetic data of ethane and propane as well as the multicomponent kinetics data of their binary mixtures measured on two commercial activated carbon samples (Ajax and Norit) under various conditions. The adsorption energetic heterogeneity is considered for all models to account for the system. It is found that, in general, the models assuming diffusion flux of adsorbed phase along the particle scale give better description of the kinetic data.
Resumo:
The Dubinin-Radushkevich (DR) equation is widely used for description of adsorption in microporous materials, especially those of a carbonaceous origin. The equation has a semi-empirical origin and is based on the assumptions of a change in the potential energy between the gas and adsorbed phases and a characteristic energy of a given solid. This equation yields a macroscopic behaviour of adsorption loading for a given pressure. In this paper, we apply a theory developed in our group to investigate the underlying mechanism of adsorption as an alternative to the macroscopic description using the DR equation. Using this approach, we are able to establish a detailed picture of the adsorption in the whole range of the micropore system. This is different from the DR equation, which provides an overall description of the process. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
For the improvement of genetic material suitable for on farm use under low-input conditions, participatory and formal plant breeding strategies are frequently presented as competing options. A common frame of reference to phrase mechanisms and purposes related to breeding strategies will facilitate clearer descriptions of similarities and differences between participatory plant breeding and formal plant breeding. In this paper an attempt is made to develop such a common framework by means of a statistically inspired language that acknowledges the importance of both on farm trials and research centre trials as sources of information for on farm genetic improvement. Key concepts are the genetic correlation between environments, and the heterogeneity of phenotypic and genetic variance over environments. Classic selection response theory is taken as the starting point for the comparison of selection trials (on farm and research centre) with respect to the expected genetic improvement in a target environment (low-input farms). The variance-covariance parameters that form the input for selection response comparisons traditionally come from a mixed model fit to multi-environment trial data. In this paper we propose a recently developed class of mixed models, namely multiplicative mixed models, also called factor-analytic models, for modelling genetic variances and covariances (correlations). Mixed multiplicative models allow genetic variances and covariances to be dependent on quantitative descriptors of the environment, and confer a high flexibility in the choice of variance-covariance structure, without requiring the estimation of a prohibitively high number of parameters. As a result detailed considerations regarding selection response comparisons are facilitated. ne statistical machinery involved is illustrated on an example data set consisting of barley trials from the International Center for Agricultural Research in the Dry Areas (ICARDA). Analysis of the example data showed that participatory plant breeding and formal plant breeding are better interpreted as providing complementary rather than competing information.
Resumo:
A system has been developed for studying the biodegradation of natural and synthetic polymeric material. The system is based on standard methods developed by the European Committee for Standardisation (CEN TC 261) (ISO/DIS 14855) and the American Society of Testing Materials, 'ASTM. Standard Test Method for Determining Aerobic. Biodegradation of Plastic Materials under Controlled Composting Conditions' (ASTM D 5338-92). A new low-cost compost facility has been used which satisfies the requirements of these standards. The system has been automated for data collection and has been run under the conditions specified by the standards. In the system, cellulose, newspaper and two starch-based polymers were treated with compost in a series of 3dm(3) vessels at 52 degreesC and under conditions of optimum moisture and pH. The degradation was followed over time by measuring the amount of carbon released as carbon dioxide. (C) 2001 Society of Chemical Industry.
Resumo:
This paper describes a rainfall simulator developed for field and laboratory studies that gives great flexibility in plot size covered, that is highly portable and able to be used on steep slopes, and that is economical in its water use. The simulator uses Veejet 80100 nozzles mounted on a manifold, with the nozzles controlled to sweep to and from across a plot width of 1.5 m. Effective rainfall intensity is controlled by the frequency with which the nozzles sweep. Spatial uniformity of rainfall on the plots is high, with coefficients of variation (CV) on the body of the plot being 8-10%. Use of the simulator for erosion and infiltration measurements is discussed.
Resumo:
Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.
Resumo:
In this paper we describe a distributed object oriented logic programming language in which an object is a collection of threads deductively accessing and updating a shared logic program. The key features of the language, such as static and dynamic object methods and multiple inheritance, are illustrated through a series of small examples. We show how we can implement object servers, allowing remote spawning of objects, which we can use as staging posts for mobile agents. We give as an example an information gathering mobile agent that can be queried about the information it has so far gathered whilst it is gathering new information. Finally we define a class of co-operative reasoning agents that can do resource bounded inference for full first order predicate logic, handling multiple queries and information updates concurrently. We believe that the combination of the concurrent OO and the LP programming paradigms produces a powerful tool for quickly implementing rational multi-agent applications on the internet.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.
Resumo:
The isotope composition of Ph is difficult to determine accurately due to the lack of a stable normalisation ratio. Double and triple-spike addition techniques provide one solution and presently yield the most accurate measurements. A number of recent studies have claimed that improved accuracy and precision could also be achieved by multi-collector ICP-MS (MC-ICP-MS) Pb-isotope analysis using the addition of Tl of known isotope composition to Pb samples. In this paper, we verify whether the known isotope composition of Tl can be used for correction of mass discrimination of Pb with an extensive dataset for the NIST standard SRM 981, comparison of MC-ICP-MS with TIMS data, and comparison with three isochrons from different geological environments. When all our NIST SRM 981 data are normalised with one constant Tl-205/Tl-203 of 2.38869, the following averages and reproducibilities were obtained: Pb-207/Pb-206=0.91461+/-18; Pb-208/Ph-206 = 2.1674+/-7; and (PbPh)-Pb-206-Ph-204 = 16.941+/-6. These two sigma standard deviations of the mean correspond to 149, 330, and 374 ppm, respectively. Accuracies relative to triple-spike values are 149, 157, and 52 ppm, respectively, and thus well within uncertainties. The largest component of the uncertainties stems from the Ph data alone and is not caused by differential mass discrimination behaviour of Ph and Tl. In routine operation, variation of sample introduction memory and production of isobaric molecular interferences in the spectrometer's collision cell currently appear to be the ultimate limitation to better reproducibility. Comparative study of five different datasets from actual samples (bullets, international rock standards, carbonates, metamorphic minerals, and sulphide minerals) demonstrates that in most cases geological scatter of the sample exceeds the achieved analytical reproducibility. We observe good agreement between TIMS and MC-ICP-MS data for international rock standards but find that such comparison does not constitute the ultimate. test for the validity of the MC-ICP-MS technique. Two attempted isochrons resulted in geological scatter (in one case small) in excess of analytical reproducibility. However, in one case (leached Great Dyke sulphides) we obtained a true isochron (MSWD = 0.63) age of 2578.3 +/- 0.9 Ma, which is identical to and more precise than a recently published U-Pb zircon age (2579 3 Ma) for a Great Dyke websterite [Earth Planet. Sci. Lett. 180 (2000) 1-12]. Reproducibility of this age by means of an isochron we regard as a robust test of accuracy over a wide dynamic range. We show that reliable and accurate Pb-isotope data can be obtained by careful operation of second-generation MC-ICP magnetic sector mass spectrometers. (C) 2002 Elsevier Science B.V. All rights reserved.