66 resultados para Melt-processing
Resumo:
The characteristics of sharkskin surface instability for linear low density polyethylene are studied as a function of film blowing processing conditions. By means of scanning electron microscopy and surface profilometry, is it found that for the standard industrial die geometry studied, sharkskin only occurs on the inside of the film bubble. Previous work suggests that this instability may be due to critical extensional stress levels at the exit of the die. Isothermal integral viscoelastic simulations of the annular extrusion process are reported, and confirm that the extensional stress at the die exit is large enough to cause local melt rupture. However the extensional stress level at the outer die wall predicts melt rupture of the outside bubble surface also, which contradicts the experimental findings. A significant temperature gradient is expected to exist across the die gap at the exit of the die, due to the external heating of the die and the low conductivity, of the polymer melt. It is shown that a gradient of 20 degreesC is required to cause sharkskin to only appear on the inner bubble surface.
Resumo:
The processing of lexical ambiguity in context was investigated in eight individuals with schizophrenia and a matched control group. Participants made speeded lexical decisions on the third word in auditory word triplets representing concordant (coin-bank-money), discordant (river-bank-money). neutral (day-bank-money), and unrelated (river-day-money) conditions. When the interstimulus interval (ISI) between the words was 100 ms. individuals with schizophrenia demonstrated priming consistent with selective. context-based lexical activation. At 1250 ms ISI a pattern of nonselective meaning facilitation was obtained. These results suggest an attentional breakdown in the sustained inhibition of meanings on the basis of lexical context. (C) 2002 Elsevier Science (USA).
Resumo:
The Crim1 gene is predicted to encode a transmembrane protein containing six von Willebrand-like cysteine-rich repeats (CRRs) similar to those in the BMP-binding antagonist Chordin (Chrd). In this study, we verify that CRIM1 is a glycosylated, Type I transmembrane protein and demonstrate that the extracellular CRR-containing domain can also be secreted, presumably via processing at the membrane. We have previously demonstrated Crim1 expression at sites consistent with an interaction with bone morphogenetic proteins (BMPs). Here we show that CRIM1 can interact with both BMP4 and BMP7 via the CRR-containing portion of the protein and in so doing acts as an antagonist in three ways. CRIM1 binding of BMP4 and -7 occurs when these proteins are co-expressed within the Golgi compartment of the cell and leads to (i) a reduction in the production and processing of preprotein to mature BMP, (ii) tethering of pre-BMP to the cell surface, and (iii) an effective reduction in the secretion of mature BMP. Functional antagonism was verified by examining the effect of coexpression of CRIM1 and BMP4 on metanephric explant culture. The presence of CRIM1 reduced the effective BMP4 concentration of the media, thereby acting as a BMP4 antagonist. Hence, CRIM1 modulates BMP activity by affecting its processing and delivery to the cell surface
Resumo:
Frequency deviation is a common problem for power system signal processing. Many power system measurements are carried out in a fixed sampling rate assuming the system operates in its nominal frequency (50 or 60 Hz). However, the actual frequency may deviate from the normal value from time to time due to various reasons such as disturbances and subsequent system transients. Measurement of signals based on a fixed sampling rate may introduce errors under such situations. In order to achieve high precision signal measurement appropriate algorithms need to be employed to reduce the impact from frequency deviation in the power system data acquisition process. This paper proposes an advanced algorithm to enhance Fourier transform for power system signal processing. The algorithm is able to effectively correct frequency deviation under fixed sampling rate. Accurate measurement of power system signals is essential for the secure and reliable operation of power systems. The algorithm is readily applicable to such occasions where signal processing is affected by frequency deviation. Both mathematical proof and numerical simulation are given in this paper to illustrate robustness and effectiveness of the proposed algorithm. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Different formulations of biodegradable starch-polyester blend nanocomposite materials have been film blown on a pilot scale film blowing tower. The physical properties of different films have been examined by thermal and mechanical analysis and X-ray diffraction. The results show that the addition of an organoclay (from 0 to 5 wt%) significantly improves both the processing and tensile properties over the original starch blends. Wide angle X-ray diffraction (WAXD) results indicate that the best results were obtained for 30wt% starch blends, and the level of delamination depends on the ratio of starch to polyester and amount of organoclay added. The crystallisation temperature of the nanocomposite blends is significantly lower than the base blend. This is probably due to the platelets inhibiting order, and hence crystallisation, of the starch and polyester. The mechanical and thermal properties of the blends are also sensitive to the way the clay particles are dispersed. (C) 2003 Society of Chemical Industry.
Resumo:
The dissolution of a sugar (sucrose as a model) with higher melting point was studied in a molten food polyol (sorbitol as a model) with lower melting point, both in anhydrous state. A DSC and optical examination revealed the dissolution of anhydrous sucrose crystals (mp 192 degreesC) in anhydrous sorbitol (mp 99 degreesC) liquid melt. The sucrose-sorbitol crystal mixtures at the proportions of 10, 30, 60, 100 and 150 g of sucrose per 100 g of sorbitol were heat scanned in a DSC to above melting endotherm of sorbitol but well below the onset temperature of melting of sucrose at three different temperatures 110, 130 and 150 degreesC. The heat scanning modes used were with or without isothermal holding. The dissolution of sucrose in the sorbitol liquid melt was manifested by an increase in the glass transition temperature of the melt and corresponding decrease in endothermic melting enthalpy of sucrose. At given experimental conditions, as high as 25 and 85% of sucrose dissolved in the sorbitol melt during 1 h of isothermal holding at 110 and 150 degreesC, respectively. Optical microscopic observation also clearly showed the reduction in the size of sucrose crystals in sorbitol melt during the isothermal holding at those temperatures. (C) 2003 Elsevier Science Ltd. All rights reserved.