107 resultados para METAL-ION IMPLANTATION
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
A comparison is made between the structures and calcium binding properties of four cyclic octapeptides that differ in the number of heterocyclic thiazole and oxazoline ring constraints. The conformations of the naturally occurring cyclic octapeptides ascidiacyclamide 1 and patellamide D 2, which each contain two oxazoline and two thiazole rings, are compared by H-1 NMR spectroscopy with the analogues cyclo(Thr-D-Val(Thz)-Ile)(2) 3 with just two thiazoles, and cyclo(Thr-D-Val-alpha Abu-Ile)(2) 4, with no 5-membered rings. The conformations observed in the solid state for ascidiacyclamide (saddle) and patellamide D (twisted figure of eight) were retained in solution, whilst peptide 3 was found to have a chair shape and peptide 4 displayed a range of conformations. The solid state structure of 4 revealed that the peptide takes a relatively planar conformation with a number of transannular hydrogen bonds, which are apparently retained in solution. Complexation studies utilising H-1 NMR and CD spectroscopy yielded 1∶1 calcium-peptide binding constants (log K) for the four peptides (2.9 (1), 2.8 (2), 4.0 (3) and 5.5 (4)) as well as a 1 : 2 metal-peptide binding constant for 3 (log K = 4.5). The affinity for Ca2+ thus decreases with increasing number of 5-membered ring constraints in the macrocycle (4 > 3 > 2 approximate to 1).
Resumo:
In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.
Resumo:
The potentially sexidentate polyamine macrocycle 15-methyl-1,4,7,10,13-pentaazacyclohexadecan-15-amine (1) was prepared via a copper(II)-templated route from 3,6,9-triazaundecan-1,ll-diamine, formaldehyde and nitroethane which first formed the copper(II) complex of the macrocycle 15-methyl-15-nitro-1,4,7,10,13-pentaazacyclohexadecane (2), reduced subsequently with zinc and aqueous acid to yield 1. The hexaamine 1, with five secondary amine groups in the macrocyclic ring and one pendant primary amine group, forms inert sexidentate octahedral complexes with cobalt(III), chromium(III) and iron(III). An X-ray structure of [Co(1)](ClO4)(3) defines the distorted octahedron of the complex cation and shows it is a symmetrical isomer with all nitrogens bound and the central aza group trans to the pendant primary amine group. The [M(1)](3+) ions are all stable indefinitely in aqueous solution and exhibit spectra consistent with MN6 d(3) (Cr), low-spin d(5) (Fe) and low-spin d(6) (Co) electronic ground states. For each complex, a reversible M(III/II) redox couple is observed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We show how entangled qubits can be encoded as entangled coherent states of two-dimensional center-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.
Resumo:
Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
In recent years our understanding of the control of ion and urea metabolism in elasmobranch fish has increased with many more species being investigated. This has demonstrated that many species regarded as stenohaline marine are at least, partially euryhaline and may survive in environments less concentrated than full seawater. This presentation will review these recent findings and then compare the osmoregulatory strategies of a partially euryhaline species, Scyliorhinus canicula, with a fully euryhaline migratory species Carcharinus leucas. This will include new data for both species and will generate new models for the control of ion and urea metabolism in elasmobranchs on which to base future research.
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
Gold(III)-directed condensation of ethane-1,2-diamine with nitroethane and formaldehyde yielded the gold-coloured macrocyclic complex (cis-6,13-dimethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecan-1-ido)gold(III) and the orange acyclic complex (1,9-diamino-5-methyl-5-nitro-3,7-diazanoran-3-ido)gold(III) in good yields. Dissolution in strongly acidic solution gave the colourless fully protonated complexes. The pendant nitro groups are disposed on the same side of the macrocycle in a cis geometry, as confirmed by crystal structure analysis. In both complexes the gold ion lies in a square-planar environment of four nitrogen donors, and the co-ordinate bond to the deprotonated amine is shorter than the remaining Au-N distances.