97 resultados para Long Accumulator
Resumo:
The present research investigated attentional blink startle modulation at lead intervals of 60, 240 and 3500 ms. Letters printed in Gothic or standard fonts, which differed in rated interest, but not valence, served as lead stimuli. Experiment I established that identifying letters as vowels/consonants took longer than reading the letters and that performance in both tasks was slower if letters were printed in Gothic font. In Experiment 2, acoustic blink eliciting stimuli were presented 60, 240 and 3500 ms after onset of the letters in Gothic and in standard font and during intertrial intervals. Half the participants (Group Task) were asked to identify the letters as vowels/consonants whereas the others (Group No-Task) did not perform a task. Relative to control responses, blinks during letters were facilitated at 60 and 3500 ms lead intervals and inhibited at the 240 ms lead interval for both conditions in Group Task. Differences in blink modulation across lead intervals were found in Group No-Task only during Gothic letters with blinks at the 3500 ms lead interval facilitated relative to control blinks. The present results confirm previous findings indicating that attentional processes can modulate startle at very short lead intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Echocardiographic analysis of regional left ventricular function is based upon the assessment of radial motion. Long-axis motion is an important contributor to overall function. but has been difficult to evaluate clinically until the recent development of tissue Doppler techniques. We sought to compare the standard visual assessment of radial motion with quantitative tissue Doppler measurement of peak systolic velocity. timing and strain rate (SRI) in 104 patients with known or suspected coronary artery disease undergoing dobutamine stress echocardiography (DbE). A standard DbE protocol was used with colour tissue Doppler images acquired in digital cine-loop format. peak systolic velocity (PSV), time to peak velocity (TPV) and SRI were assessed off-line by an independent operator. Wall motion was assessed by an experienced reader. Mean PSV, TPV and SRI values were compared with wall motion and the presence of coronary artery disease by angiography. A further analysis included assessing the extent of jeopardized myocardium by comparing average values of PSV, TPV and SRI against the previously validated angiographic score. Segments identified as having normal and abnormal radial wall motion showed significant differences in mean PSV (7.9 +/- 3.8 and 5.9 +/- 3.3 cm/s respectively; P < 0.001), TPV (84 40 and 95 +/- 48 ms respectively; P = 0.005) and SRI (- 1.45 +/- 0.5 and - 1.1 +/- 0.9 s(-1) respectively; P < 0.001). The presence of a stenosed subtending coronary artery was also associated with significant differences from normally perfused segments for mean PSV (8.1 3.4 compared with 5.7 +/- 3.7 cm/s; P < 0.001), TPV (78 50 compared with 92 +/- 45 ms; P < 0.001) and SRI (- 1.35 0.5 compared with - 1.20 +/- 0.4 s(-1); P = 0.05). PSV, TPV and SRI also varied significantly according to the extent of jeopardized myocardium within a vascular territory. These results suggest that peak systolic velocity, timing of contraction and SRI reflect the underlying physiological characteristics of the regional myocardium during DbE, and may potentially allow objective analysis of wall motion.
Resumo:
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Resumo:
Purpose: Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods: Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results: CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion: These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.
Resumo:
This multicenter study evaluated the impact of genetic counseling in 218 women at risk of developing hereditary breast cancer. Women were assessed prior to counseling and 12-month post-counseling using self-administered, mailed questionnaires. Compared to baseline, breast cancer genetics knowledge was increased significantly at follow-up. and greater increases in knowledge were associated with educational level. Breast cancer anxiety decreased significantly from baseline to follow-up, and these decreases were associated with improvements in perceived risk. A significant decrease in clinical breast examination was observed at the 12-month follow-up. Findings suggest that women with a family history of breast cancer benefit from attending familial cancer clinics as it leads to increases in breast cancer genetics knowledge and decreases in breast cancer anxiety. The lowered rates of clinical breast examination indicate that the content of genetic counseling may need to be reviewed to ensure that women receive and take away the right message. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Four sunspot-minimum periods (1963-1966, 1971-1977, 1983-1987 and 1992-1997) have been examined for the results which are presented. Using several different weather parameters, tropospheric gravity waves, enhanced cold fronts and two rainfall data sets in Eastern Australia, associations at reasonably high levels of significance have been found with enhanced geomagnetic activity (EGA). Statistically this EGA involved either short delays of several days or long delays of about 20 days. The geomagnetic parameters used were (a) the AE index (b) the hourly H component for a number of stations and (c) the daily K-P-sum value. The K-P-sum analyses have shown that the EGA associated with the delays form part of four or five cycles of recurrent geomagnetic activity for 27-day periodicities. Furthermore statistically two recurrent cycles are found to exist concurrently, one apparently related to the short delays and the other to the long delays. Periodicities of 13.5 days are created because the two sets are displaced from each other by approximately this interval. A brief reference is made to the 13.5 periodicity known to exist for geomagnetic activity and the evidence in the literature for active regions on the sun to be displaced by 180 degrees of solar longitude.
Resumo:
The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.
Resumo:
New Zealand is generally thought to have been physically isolated from the rest of the world for over 60 million years. But physical isolation may not mean biotic isolation, at least on the time scale of millions of years. Are New Zealand's present complement of plants the direct descendants of what originally rafted from Gondwana? Or has there been total extinction of this initial flora with replacement through long-distance dispersal (a complete biotic turnover)? These are two possible extremes which have come under recent discussion. Can the fossil record be used to decide the relative importance of the two endpoints, or is it simply too incomplete and too dependent on factors of chance? This paper suggests two approaches to the problem-the use of statistics to apply levels of confidence to first appearances in the fossil record and the analysis of trends based on the entire palynorecord. Statistics can suggest that the first appearance of a taxon was after New Zealand broke away from Gondwana-as long as the first appearance in the record was not due to an increase in biomass from an initially rare state. Two observations can be drawn from the overall palynorecord that are independent of changes in biomass: (1) The first appearance of palynotaxa common to both Australia and New Zealand is decidedly non-random. Most taxa occur first in Australia. This suggests a bias in air or water transport from west to east. (2) The percentage of endemic palynospecies in New Zealand shows no simple correlation with the time New Zealand drifted into isolation. The conifer macrorecord also hints at complete turnover since the Cretaceous.
Resumo:
We characterized the consensus sequence and structure of a long terminal repeat (LTR) retrotransposon from the genome of the human blood fluke, Schistosoma japonicum, and have earned this element, Gulliver. The full length, consensus Gulliver LTR retrotransposon was 4788 bp, and it was flanked at its 5'- and 3'-ends by LTRs of 259 bp. Each LTR included RNA polymerase II promoter sequences, a CAAT signal and a TATA box, Gulliver exhibited features characteristic of a functional LTR retrotransposon including two read through (termination) ORFs encoding retroviral gag and pol proteins of 312 and 1071 amino acid residues, respectively. The gag ORF encoded motifs conserved in nucleic acid binding proteins, while the pol ORF encoded conserved domains of aspartic protease, reverse transcriptase (RT), RNaseH and integrase, in that order, a pol pattern conserved in the gypsy lineage of LTR retrotransposons. Whereas the sequence and structure of Gulliver was similar to that of gypsy, phylogenetic analysis revealed that Gulliver did not group particularly closely with the gypsy family. Rather, its closest relatives were a LTR retrotransposon from Caenorhabditis elegans, mag from Bombyx mori and, to a lesser extent, easel from the salmon Oncorhynchus keta. Dot blot hybridizations indicated that Gulliver was present at between 100 and several thousand copies in the S. japonicum genome, and Southern hybridization analysis suggested its probable presence in the genome of Schistosoma mansoni. Transcripts encoding the RT domain of Gulliver were detected by RT-PCR in larval and adult stages of S. japonicum, indicating that (at least) the RT domain of Gulliver is transcribed. This is the first report of the sequence and structure of an LTR retrotransposon from any schistosome or indeed from any species belonging to the phylum Platyhelminthes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Observations of accelerating seismic activity prior to large earthquakes in natural fault systems have raised hopes for intermediate-term eartquake forecasting. If this phenomena does exist, then what causes it to occur? Recent theoretical work suggests that the accelerating seismic release sequence is a symptom of increasing long-wavelength stress correlation in the fault region. A more traditional explanation, based on Reid's elastic rebound theory, argues that an accelerating sequence of seismic energy release could be a consequence of increasing stress in a fault system whose stress moment release is dominated by large events. Both of these theories are examined using two discrete models of seismicity: a Burridge-Knopoff block-slider model and an elastic continuum based model. Both models display an accelerating release of seismic energy prior to large simulated earthquakes. In both models there is a correlation between the rate of seismic energy release with the total root-mean-squared stress and the level of long-wavelength stress correlation. Furthermore, both models exhibit a systematic increase in the number of large events at high stress and high long-wavelength stress correlation levels. These results suggest that either explanation is plausible for the accelerating moment release in the models examined. A statistical model based on the Burridge-Knopoff block-slider is constructed which indicates that stress alone is sufficient to produce accelerating release of seismic energy with time prior to a large earthquake.
Resumo:
The mechanism of generation of memory cytotoxic T cells (CTL) following immunization remains controversial. Using tumor protection and IFN-gamma ELISPOT assays in mice to detect functional CTL, we show that the initial effector CTL burst size after immunization is not directly related to the amount of functional memory CTL formed, suggesting that memory CTL are unlikely to arise stochastically from effector CTL. Induction of MHC class II-restricted T helper cells at the time of immunization by inclusion of a T helper peptide or protein in the immunogen, is necessary to generate memory CTL, although no T helper cell induction is required to generate effector CTL to a strong MHC class I-binding peptide. Host protective T cell memory correlates with the number of CTL epitope responsive IFN-gamma-secreting memory T cells as measured in an ELISPOT assay at the time of tumor challenge. We conclude that a different antigen presenting environment is required to induce long-lasting functional memory CTL, and non-cognate stimulation of the immune system is essential to allow generation of a long-lasting host protective memory CTL response.
Resumo:
In previous studies, taxing income or consumption hinders long-run growth. Incorporating saving and leisure into the non-scale Schumpeterian model of [Journal of Political Economy 107 (1999) 715-730], we show that the usual growth effects of taxing consumption and labor income do not exist. (C) 2002 Elsevier Science B.V. All rights reserved.