124 resultados para Knowledge Process
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Background: The Royal Australian and New Zealand College of Psychiatrists is co-ordinating the development of clinical practice guidelines (CPGs) in psychiatry, funded under the National Mental Health Strategy (Australia) and the New Zealand Health Funding Authority. This paper presents CPGs for schizophrenia and related disorders. Over the past decade schizophrenia has become more treatable than ever before. A new generation of drug therapies, a renaissance of psychological and psychosocial interventions and a first generation of reform within the specialist mental health system have combined to create an evidence-based climate of realistic optimism. Progressive neuroscientific advances hold out the strong possibility of more definitive biological treatments in the near future. However, this improved potential for better outcomes and quality of life for people with schizophrenia has not been translated into reality in Australia. The efficacy-effectiveness gap is wider for schizophrenia than any other serious medical disorder. Therapeutic nihilism, under-resourcing of services and a stalling of the service reform process, poor morale within specialist mental health services, a lack of broad-based recovery and life support programs, and a climate of tenacious stigma and consequent lack of concern for people with schizophrenia are the contributory causes for this failure to effectively treat. These guidelines therefore tackle only one element in the endeavour to reduce the impact of schizophrenia. They distil the current evidence-base and make recommendations based on the best available knowledge. Method: A comprehensive literature review (1990-2003) was conducted, including all Cochrane schizophrenia reviews and all relevant meta-analyses, and a number of recent international clinical practice guidelines were consulted. A series of drafts were refined by the expert committee and enhanced through a bi-national consultation process. Treatment recommendations: This guideline provides evidence-based recommendations for the management of schizophrenia by treatment type and by phase of illness. The essential features of the guidelines are: (i) Early detection and comprehensive treatment of first episode cases is a priority since the psychosocial and possibly the biological impact of illness can be minimized and outcome improved. An optimistic attitude on the part of health professionals is an essential ingredient from the outset and across all phases of illness. (ii) Comprehensive and sustained intervention should be assured during the initial 3-5 years following diagnosis since course of illness is strongly influenced by what occurs in this 'critical period'. Patients should not have to 'prove chronicity' before they gain consistent access and tenure to specialist mental health services. (iii) Antipsychotic medication is the cornerstone of treatment. These medicines have improved in quality and tolerability, yet should be used cautiously and in a more targeted manner than in the past. The treatment of choice for most patients is now the novel antipsychotic medications because of their superior tolerability and, in particular, the reduced risk of tardive dyskinesia. This is particularly so for the first episode patient where, due to superior tolerability, novel agents are the first, second and third line choice. These novel agents are nevertheless associated with potentially serious medium to long-term side-effects of their own for which patients must be carefully monitored. Conventional antipsychotic medications in low dosage may still have a role in a small proportion of patients, where there has been full remission and good tolerability; however, the indications are shrinking progressively. These principles are now accepted in most developed countries. (vi) Clozapine should be used early in the course, as soon as treatment resistance to at least two antipsychotics has been demonstrated. This usually means incomplete remission of positive symptomatology, but clozapine may also be considered where there are pervasive negative symptoms or significant or persistent suicidal risk is present. (v) Comprehensive psychosocial interventions should be routinely available to all patients and their families, and provided by appropriately trained mental health professionals with time to devote to the task. This includes family interventions, cognitive-behaviour therapy, vocational rehabilitation and other forms of therapy, especially for comorbid conditions, such as substance abuse, depression and anxiety. (vi) The social and cultural environment of people with schizophrenia is an essential arena for intervention. Adequate shelter, financial security, access to meaningful social roles and availability of social support are essential components of recovery and quality of life. (vii) Interventions should be carefully tailored to phase and stage of illness, and to gender and cultural background. (viii) Genuine involvement of consumers and relatives in service development and provision should be standard. (ix) Maintenance of good physical health and prevention and early treatment of serious medical illness has been seriously neglected in the management of schizophrenia, and results in premature death and widespread morbidity. Quality of medical care for people with schizophrenia should be equivalent to the general community standard. (x) General practitioners (GPs)s should always be closely involved in the care of people with schizophrenia. However, this should be truly shared care, and sole care by a GP with minimal or no special Optimal treatment of schizophrenia requires a multidisciplinary team approach with a consultant psychiatrist centrally involved.
Resumo:
Background: Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. Results: The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/mu g of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A ( ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were upregulated between 2 - 8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. Conclusion: The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and methods for checking them are described. It is shown on a simple example how different modelling assumptions act on the model equations and their effect on the differential index of the resulted model is also indicated.
Resumo:
Chinese-style dried, shredded meat is traditionally prepared by sequential cooking, shredding, pre-drying, and final drying (roasting) of lean meat. In this study, shredded dried beef (a(w)<0.6) was prepared by omitting roasting but prolonging pre-drying. Sensory scores of the modified product were lower than those for the traditional product. When heat pump drying replaced traditional oven drying, drying time was shortened without significant difference in quality attributes. Desorption curves were established for shredded beef at several drying temperatures.