73 resultados para IRON FILMS
Resumo:
The formation of CdS nanoparticles by reacting mixed Langmuir-Blodgett films of arachidic acid and either octadecylamine or dimethyldioctadecylammonium nitrate on a cadmium-containing subphase with hydrogen sulfide gas has resulted in the identification of a number of structural changes, observed using grazing incidence X-ray diffraction. In the case of octadecylamine, the structure after reaction is a hexagonal close-packed array of surfactant-stabilized nanoclusters, with a lattice constant of a = 17.65 Angstrom. In both octadecylamine and dimethyldioctadecylammonium nitrate films, the presence of a unit cell tilted at 38degrees to the plane of the substrate was found. Despite these changes, the average nanoparticle size was unaffected by the addition of either second component to the film.
Resumo:
Background/Aims: Concordance of iron indices between same sex siblings homozygous for the cysteine-to-tyrosine substitution at amino acid 282 (C282Y) mutation suggests that the variable phenotype in hereditary hemochromatosis is caused by genetic factors. Concordance of iron indices between same-sex heterozygous sibling pairs would provide further evidence of genetic modifiers of disease expression, and guidance for family screening strategies of subjects heterozygous for the C282Y mutation. Methods: We compared the iron indices of 35 C282Y homozygous and 35 C282Y heterozygous same-sex sibling pairs. To clarify whether concordance between siblings was due to environmental or genetic factors we compared the iron indices of 164 C282Y homozygous-normal, same-sex dizygotic twins. Results: Serum ferritin (r = 0.50, P = 0.003), hepatic iron concentration (r = 0.61, P = 0.025) and hepatic iron index (r = 0.67, P = 0.01) were highly concordant in C282Y homozygotes. Heterozygote siblings were concordant for serum ferritin (r = 0.76, P = 0.0001) and transferrin saturation (r = 0.79, P = 0.0001). Homozygote-normal same-sex dizygotic twins were concordant for serum ferritin (r = 0.62, P = 0.0001) but not for transferrin saturation. Conclusions: Concordance of iron indices exists in C282Y homozygote and heterozygote sibling pairs. Siblings of expressing C282Y heterozygotes require phenotypic assessment. These data provide evidence for modifying genes influencing disease expression in hemochromatosis. (C) 2002 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Women have lower iron stores than men because of iron loss during their reproductive years. However, variation between women could result from differences in iron loss, aspects of iron homeostasis common to men and women, or a combination of both. We compared the effects of age, menopause, menstrual blood loss and the number of pregnancies (sex-specific factors), and the effects of genetic variation, on markers of iron stores. We assessed how much the same genes or other familial factors influence iron status in both men and women. Data from 2039 female twins who participated in studies of reproductive health and iron status were used to estimate the proportions of variation that could be ascribed to genes, environment and measured factors. Significant effects of age, menopausal status and magnitude of menstrual blood loss were demonstrated, accounting for up to 18% of variance in serum ferritin in this sample, but number of children had no significant effect. Genetic effects were more than twice as great as sex-specific effects. The within-pair similarity of ferritin values in dizygotic female twin pairs was greater than for dizygotic opposite-sex pairs, but this difference was not quite significant, consistent with a minor role for sex-specific factors; and the opposite-sex within-pair differences did not diminish significantly with age. We conclude that the contribution of genetic differences between women to variation in iron stores outweighs the comparatively small effects of interindividual variation in iron loss through variation in menstruation and number of pregnancies.
Resumo:
Background The mechanisms responsible for disturbed iron homoeostasis in hereditary haemochromatosis are poorly understood. However, results of some studies indicate a link between hepcidin, a liver-derived peptide, and intestinal iron absorption, suggesting that this molecule could play a part in hepatic iron overload. To investigate this possible association, we studied the hepatic expression of the gene for hepcidin (HAMP) and a gene important in iron transport (IREG1) in patients with haemochromatosis, in normal controls, and in Hfe-knockout mice. Methods We extracted total RNA from the liver tissue of 27 patients with HFE-associated haemochromatosis, seven transplant donors (controls), and Hfe-knockout mice. HAMP and IREG1 mRNA concentrations were examined by ribonuclease protection assays and expressed relative to the housekeeping gene GAPD. Findings There was a significant decrease in HAMP expression in untreated patients compared with controls (5.4-fold, 95% CI 3.3-7.5; p
Resumo:
The consumption of excess alcohol in patients with liver iron storage diseases, in particular the iron-overload disease hereditary haemochromatosis (HH), has important clinical consequences. HH, a common genetic disorder amongst people of European descent, results in a slow, progressive accumulation of excess hepatic iron. If left untreated, the condition may lead to fibrosis, cirrhosis and primary hepatocellular carcinoma. The consumption of excess alcohol remains an important cause of hepatic cirrhosis and alcohol consumption itself may lead to altered iron homeostasis. Both alcohol and iron independently have been shown to result in increased oxidative stress causing lipid peroxidation and tissue damage. Therefore, the added effects of both toxins may exacerbate the pathogenesis of disease and impose an increased risk of cirrhosis. This review discusses the concomitant effects of alcohol and iron on the pathogenesis of liver disease. We also discuss the implications of co-existent alcohol and iron in end-stage liver disease.
Resumo:
Langmuir-Blodgett films of the tetracationic porphyrin tetrakis( octadecyl-4-pyridinium) porphinatozinc(ii) bromide transferred from subphases containing different salts were studied using X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry. In contrast to previous results at the air/water interface, we found that the porphyrin adopted a fixed conformation at the air/solid interface regardless of composition of the subphase or whether the films were transferred above or below the primary phase transition. This conformation was assigned to the formation of an interdigitated bilayer structure.
Resumo:
Three confirmed cases of acute iron tablet-induced necrosis due to a fulminant chemical burn injury to the tracheobronchial tree as a result of accidental inhalation and/or aspiration of iron tablets are described. Although histological confirmation has been relied upon for diagnosis, the distinctive bronchoscopic features may allow prompt recognition and treatment by bronchoscopists to prevent this potentially fatal condition.
Resumo:
Using synchrotron X-ray grazing incidence diffraction, superlattice structures have been observed to develop in Langmuir-Blodgett films of cadmium arachidate as the temperature is raised. The previously reported superstructure in the stacked lamellae at room temperature changes at about 70 degreesC and there are further changes at about 90 and 103 degreesC before the major phase transition from stacked lamellae to hexagonally packed rods occurs at 107 degreesC (Langmuir 1997, 13, 1602). Between 70 and 103 degreesC there is a 1 x 10 one-dimensional in-plane superstructure, which is commensurate with the local structure and has an interlayer shift along [01] by a distance of b (of the local structure) at lower temperatures, and a further shift at about 90 degreesC. At lower (
Resumo:
A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.