94 resultados para Hepatic progenitor cells
Resumo:
Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.
Resumo:
Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.
Resumo:
Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved
Resumo:
A method is presented for the direct extraction of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R-3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (
Resumo:
Background & Aims: Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that occasionally progresses to cirrhosis but usually has a benign course. The aim of this study was to investigate the role of the hemochromatosis mutation Cys282Tyr in development of the mild hepatic iron overload found in some patients with NASH and its association with hepatic damage in these patients. Methods: Fifty-one patients with NASH were studied. The presence of the Cys282Tyr mutation was tested in all patients, and the data were analyzed with respect to the histological grade of steatosis, inflammation, Perls' staining, hepatic iron concentration (HIC), and serum iron indices. Results: Thirty-one percent of patients with NASH were either homozygous or heterozygous for the Cys282Tyr mutation. This mutation was significantly associated with Perls' stain grade (P < 0.005), HIC (P < 0.005), and transferrin saturation percentage (P < 0.005) but not with serum ferritin levels. Linear regression analysis showed that increased hepatic iron (Perls' stain or HIC) had the greatest association with the severity of fibrosis (P < 0.0001). Conclusions: The Cys282Tyr mutation is responsible for most of the mild iron overload found in NASH and thus has a significant association with hepatic damage in these patients. Heterozygosity for the hemochromatosis gene mutation therefore cannot always be considered benign.
Resumo:
In this work the in-situ perfused rat liver has been used to examine the effect of changing the protein content of the perfusate on the hepatic extraction of O-acyl esters of salicylic acid. The hepatic availability (F) of these solutes was studied at a flow-rate of 30 mt min(-1) with perfusate albumin concentrations of 0, 2, and 4% w/v. The hepatic availability of the esters was shown to decrease with increasing carbon-chain length in the O-acyl group; for all the esters the hepatic availability increased with increasing albumin concentration in the perfusate. The dispersion-model-derived efficiency number (R-N) Of the esters was shown to increase with increasing lipophilicity and decrease with increasing albumin concentration in the perfusate. The unbound fraction (f(u),) of the esters decreased with lipophilicity. R-N/f(u), for acetylsalicylic acid remained relatively constant as the albumin concentration was increased. However, R-N/f(u), for n-pentanoyl- and n-hexanoylsalicylic acids increased significantly as albumin concentration increased from 0% to 4%. Thus, for the more lipophilic solutes (n-pentanoyl- and n-hexanoylsalicylic acids) the presence of albumin apparently facilitates the uptake of unbound solute relative to acetylsalicylic acid.
Resumo:
To date, the laboratory has cloned seven unique human sulfotransferases; five aryl sulfotransferases (HAST1, HAST2, HAST3, HAST4 and HAST4v), an estrogen sulfotransferase and a dehydroepiandrosterone sulfotransferase. The cellular distribution of human aryl sulfotransferases in human hepatic and extrahepatic tissues has been determined using the techniques of hybridization histochemistry and immunohistochemistry. Human aryl sulfotransferase expression was detected in liver, epithelial cells of the gastrointestinal mucosal layer, epithelial cells lining bronchioles and in mammary duct epithelial cells. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Plasma leaking from damaged retinal blood vessels can have a significant impact on the pathologies of the posterior segment of the eye. Inflammation in the eye and metabolic change resulting from diabetes mellitus causes vascular leakage with alteration of the phenotype of retinal pigment epithelial (RPE) cells and fibrocytes, resulting in changes in cell function. Phenotypically altered cells then significantly contribute to the pathogenesis of retinopathies by being incorporated into tractional membranes in the vitreous, where they secrete matrix molecules, such as fibronectin, and express altered cell surface antigens. We hypothesize that there is a direct relationship between the leaking of plasma and the proliferation and phenotypic change of RPE cells and fibroblasts, thus exacerbating the pathology of retinal disease. If the hypothesis is correct, control of vascular leakage becomes an important target of therapy in proliferative vitreoretinopathy.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
The carboxy terminal octapeptide of cholecystokinin (CCK8) is a hormone that binds high affinity receptors in a number of tissues including pancreas and pancreatic tumours. As part of our studies to develop effective gene therapy for the treatment of pancreatic cancers, we have investigated various gene delivery systems that depend on CCK8 receptor targeting. In this paper,we describe the synthesis of a CCK8-DNA complex designed to deliver foreign DNA to cholecystokinin receptor-positive cells. CCK8 was ligated to avidin and then complexed to linearis biotinylated DNA (pSV-CAT). The uptake of P-32-labelled CCK8-DNA complex by rat pancreatic acini was linear with time over 4 h with 65-70% of uptake inhibited by 100 nM CCK8. The complex appeared to be internalised since it could not be removed by acid wash. When administered intra-arterially, the complex was rapidly removed from the circulation with no evidence of targeted delivery to the pancreas, However, following a single intraperitoneal dose, the pancreas accumulated-5- 8% of the total administered complex by 24 h. These results suggest that peptide-dependent gene delivery to CCK receptor positive cells in vivo is feasible but, when administered directly into the circulation, diffusional barriers across the endothelium may limit distribution to peripheral tissues. Intraperitoneal administration therefore may be a useful alternative for targeting the pancreas.
Resumo:
PNU-87407 and PrNU-88509, beta-ketoamide anthelmintics that are structurally related to each other and to the salicylanilide anthelmintic closantel, exhibit different anthelmintic spectra and apparent toxicity in mammals, The basis for this differential pharmacology was examined in experiments that measured motility and adenosine triphosphate (ATP) levels in larval and adult stages of the gastrointestinal nematode, Haemonchus contortus, and in a vertebrate liver cell line and mitochondria, PNU-87407 and PNU-88509 both exhibited functional cross-resistance with closantel in larval migration assays using closantel-resistant and -sensitive isolates of H, contortus. Each compound reduced motility and,ATP levels in cultured adult H. contortus in a concentration- and time-dependent manner: however, motility was reduced more rapidly by PNU-88509, and ATP levels were reduced by lower concentrations of closantel than the beta-ketoamides. Tension recordings from segments of adult H, contortus showed that PNU-88509 induces spastic paralysis, while PNU-87407 and closantel induce flaccid paralysis of the somatic musculature. Marked differences in the actions of these compounds were also observed in the mammalian preparations. In Chang liver cells, ATP levels were reduced after 3 h exposures to greater than or equal to 0.25 mu M PNU-87407 1 mu M closantel or 10 mu M PNU-88509, Reductions in ATP caused by PNU-88509 were completely reversible, while the effects of closantel and PNU-87407; were irreversible. PNU-87407, closantel and PNU-88509 uncoupled oxidative phosphorylation in isolated rat liver mitochondria, inhibiting the respiratory control index (with glutamate or succinate as substrate) by 50% at concentrations of 0.14, 0.9 and 7.6 mu M respectively.