99 resultados para HOMOGENEOUS COPOLYMERS
Resumo:
Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.
Resumo:
Non-periodic structural variation has been found in the high T-c cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu3O8+delta, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high T-c cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high T-c cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
We consider the relation between the conditional moment closure (CMC) and the unsteady flamelet model (FM). The CMC equations were originally constructed as global equations, while FM was derived asymptotically for a thin reaction zone. The recent tendency is to use FM-type equations as global equations. We investigate the possible consequences and suggest a new version of FM: coordinate-invariant FM (CIFM). Unlike FM, CIFM complies with conditional properties of the exact transport equations which are used effectively in CMC. We analyse the assumptions needed to obtain another global version of FM: representative interactive flamelets (RIF), from original FM and demonstrate that, in homogeneous turbulence, one of these assumptions is equivalent to the main CMC hypothesis.
Resumo:
The diffusion of water into a series of hydroxyethyl methacrylate, HEMA, copolymers with tetrahydrofurfuryl methacrylate, THFMA, has been studied over a range of copolymer compositions using NMR imaging analyses. For polyHEMA the diffusion was found to be consistent with a Fickian model. The mass diffusion coefficient of water in polyHEMA at 37 degreesC was determined from the profiles of the diffusion front to be 1.5 x 10(-11) m(2) s(-1), which is less than the value based upon mass uptake, 2.0 x 10(-11) m(2) s(-1). The profiles of the water diffusion front obtained from the NMR images showed that stress was induced at the interface between the rubbery and glassy regions which led to formation of small cracks in this region of the glassy matrix of polyHEMA and its copolymers with mole fractions of HEMA greater than 0.6. Water was shown to be able to enter these cracks forming water pools. For copolymers of HEMA and THFMA with mole fractions of HEMA less than 0.6 the absence of cracks was attributed to the ability of the THFMA sequences to undergo stress relaxation by creep.
Resumo:
The free radical polymerization of styrene in bulk was monitored by ESR and FT near-infrared spectroscopy at 70°C for a series of concentrations of the initiator, dimethyl 2,2′-azobis(isobutyrate). In order to obtain detailed kinetic information over the intire conversion range, and the gel effect range in particular, conversion and free radical concentration data points were accumulated with exceptionally short time intervals. The polystyrene radical concentration ([St•]) went through a sharp maximum at the gel effect, a feature that has hitherto escaped observation due to the rapid concentration changes in the gel effect range relative to the data point time intervals of previous studies. Temperature measurements throughout the polymerization were employed to calculate that a temperature increase was not the cause of the [St•] maximum, which thus appeares to be a genuine feature of the gel effect of this system under isothermal conditions. The propagation rate constant (kp) as a function of monomer conversion exhibited a marked dependence on initiator concentration at high monomer conversion; the sharp decrease in kp with increasing conversion was shifted to higher conversions with increasing initiator concentration.
Resumo:
The radiation chemistry of poly(tetrafluoroethylene-co-perfluoropropylene), FEP, with a mole fraction of tetrafluoroethylene, TFE, of 0.90 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 3.0 MGy. The radiolysis temperatures were 300, 363, 423 and 523 K. New structure formation in the copolymers was analyzed by solid-state F-19 NMR. The new structures formed in the copolymers have been identified and the G-values for the formation of new -CF3 groups was 2.2 at the lower temperatures and increased to 2.9 at 523 K. The G-value for the loss of original -CF3 groups was approximate to1.0 at all temperatures. At the lower temperatures there was a net loss of -CF-groups on irradiation, G(CF) of -1.3, -0.9 and -0.5 at 300, 363 and 423 K, respectively, but at 523 K there was a net gain with G(CF) equal to 0.8. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Culverts are among the most common hydraulic structures. Modern designs do not differ from ancient structures and are often characterised by significant afflux at design flows. A significant advance was the development of the Minimum Energy Loss (MEL) culverts in the late 1950s. The design technique allows a drastic reduction in upstream flooding associated with lower costs. The development and operational performances of this type of structure is presented. The successful operation of MEL culverts for more than 40 years is documented with first-hand records during and after floods. The experiences demonstrate the design soundness while highlighting the importance of the hydraulic expertise of the design engineers.
Resumo:
The radiation chemistry of FEP copolymer with a mole fraction TFE of 0.90 has been studied using Co-60 gamma -radiation at temperatures of 300 and 363 K. New structure formation in the copolymers was analysed by solid state F-19 NMR. New chain scission products were the principal new structures found. The G-value for the formation of new -CF3 groups was 2.2 and 2.1 for the radiolysis of FEP at 300 and 363 K, respectively, and the G-value for the loss of original -CF3 groups was G(-CF3) = 1.0 and 0.9 at these two temperatures, respectively. There was a nett loss of -CF- groups on irradiation, with G(-CF) of 1.3 and 0.9 at 300 and 363 K, respectively. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state F-19 NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of-O-CF3 and -CF2-CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the -CF2-CF3 chain ends and -CF- branch points mere not linearly related ia the composition. rather they wets correlated with the radical yields measured at 77 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.
Resumo:
A scheme is presented to incorporate a mixed potential integral equation (MPIE) using Michalski's formulation C with the method of moments (MoM) for analyzing the scattering of a plane wave from conducting planar objects buried in a dielectric half-space. The robust complex image method with a two-level approximation is used for the calculation of the Green's functions for the half-space. To further speed up the computation, an interpolation technique for filling the matrix is employed. While the induced current distributions on the object's surface are obtained in the frequency domain, the corresponding time domain responses are calculated via the inverse fast Fourier transform (FFT), The complex natural resonances of targets are then extracted from the late time response using the generalized pencil-of-function (GPOF) method. We investigate the pole trajectories as we vary the distance between strips and the depth and orientation of single, buried strips, The variation from the pole position of a single strip in a homogeneous dielectric medium was only a few percent for most of these parameter variations.
Resumo:
The physiological and structural deficits contributing to swallowing complications in the pharyngolaryngectomy patient population are not homogeneous. Consequently, a team approach, involving medical investigations as well as clinical and radiological assessments of swallowing, is necessary to facilitate diagnosis of the underlying impairment and assist the medical/surgical and speech pathology team members in the process of individualizing the management plan for each patient. In the present study, the clinical assessment and management of eight pharyngolaryngectomy patients who presented with a decline in swallowing function unrelated to immediate postsurgical effects or direct effects of radiotherapy are reported. Clinical and radiological investigations revealed a heterogeneous group of factors contributing to their swallowing impairments and disability levels, including difficulty with graft and anastomotic patency and graft motility, impaired lingual coordination, increased bolus transit time, nasal and oral regurgitation, patient distress, and recurrence. Variation between the cases supported the need for differential intervention and management plans for all eight patients. Ratings of perceived swallowing disability, handicap, and well-being/distress levels at initial assessment and again six months following dysphagia intervention revealed a pattern of reduced levels of impairment, functional disability, and overall patient distress levels following informed intervention. The present case study data highlights the key role thorough clinical and radiological investigations play in the process of diagnosing the factors contributing to dysphagia and guiding the management of the resultant swallowing disability in the pharyngolaryngectomy population.
Resumo:
The relative oviposition rate of the parasitoid Fopius arisanus (Sonan) was investigated across three frugivorous tephritid species, Bactrocera tryoni Froggart, Bactrocera jarvisi (Tryon) and Bactrocera cucumis French. Choice and no-choice tests were both used. The suitability of these three species for sustaining larval development and survival to the adult stage was also assessed. Fopius arisanus parasitized all three tephritid species. regardless of the method of exposure, but showed stronger preference for B. tryoni and B. jarvisi over B. cucumis. Superparasitism was extremely rare. Successful development of F. arisanus varied across host species. Bactrocera tryoni yielded significantly more parasitoids than B. jarvisi, but no wasps emerged from B. cucumis puparia. Tests were set up in replicated trials. but results were not homogeneous across trials. We discuss the host relationships of F. arisanus with reference to this variation and in relation to host suitability for larval development.
Resumo:
In situ gelatin zymography is a simple technique providing valuable information about the cellular and tissue localization of gelatinases. Until recently, the use of this technique has been confined to soft, relatively homogeneous tissue. In this report in situ zymography has been utilized to assess the sub-lamellar location of gelatinases in the hard, semi-keratinized epidermal layer and the adjacent soft connective tissue matrix of the dermis of the equine hoof. We show that alterations in the orientation at which the tissue is dipped and withdrawn from the emulsion cause profound alterations in emulsion thickness. Microscopic Variations in the surface topography of frozen tissue sections also influence emulsion thickness making interpretation of the results difficult. Given these results, researchers must be aware of potential variations in zymographic analysis may be influenced by physical tissue parameters in addition to suspected gelatinase activity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.