66 resultados para Grafting density
Resumo:
Background : Femoral shaft fracture incidence increases in older adults and is associated with low-energy trauma. Apart from bone density, the distribution and size of bone contributes to its strength. Aim : To examine if bone geometry and density of the femoral mid-shaft in older adults differs by sex and race, we studied 197 White women, 225 Black women, 242 White men, and 148 Black men aged 70-79 years participating in the Health, Aging, and Body Composition study; a prospective cohort study in the USA. A secondary purpose of the study was to examine the association of site-specific muscle and fat to bone geometry and density. Subjects and methods : Subjects were community-dwelling and reported no difficulty walking one-quarter of a mile or climbing stairs. Mid-femoral volumetric bone mineral density (vBMD, mg cm -3 ), total area (TA), cortical area (CA), medullary area (MA), cross-sectional moments of inertia (CSMI: I x , I y , J ), and muscle and fat areas (cm 2 ) were determined by computed tomography (CT; GE CT-9800, 10 mm slice thickness). Results : vBMD was greater in men than women with no difference by race ( p < 0.001). Bone areas and area moments of inertia were also greater in men than women ( p < 0.001), with Black women having higher values than White women for TA and CA. Standardizing geometric parameters for body size differences by dividing by powers of femur length did not negate the sex difference for TA and MA. Significant differences ( p < 0.05) among the four groups also remained for I x and J . Mid-thigh muscle area was an independent contributor to TA in all groups (Std beta = 0.181-0.351, p < 0.05) as well as CA in women (Std beta = 0.246-0.254, p < 0.01) and CSMI in White women (Std beta = 0.175-0.185, p < 0.05). Further, muscle area was a significant contributor to vBMD in Black women. Conclusion : These results indicate that bone geometry and density of the femoral diaphysis differs primarily by sex, rather than race, in older well-functioning adults. In addition, site-specific muscle area appears to have a potential contributory role to bone geometry parameters, especially in women.
Resumo:
In this paper, we revisit the surface mass excess in adsorption studies and investigate the role of the volume of the adsorbed phase and its density in the analysis of supercritical gas adsorption in non-porous as well as microporous solids. For many supercritical fluids tested (krypton, argon, nitrogen, methane) on many different carbonaceous solids, it is found that the volume of the adsorbed phase is confined mostly to a geometrical volume having a thickness of up to a few molecular diameters. At high pressure the adsorbed phase density is also found to be very close to but never equal or greater than the liquid phase density. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. (C) 2003 Society of Chemical Industry.
Resumo:
Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We present a theory for the transport of molecules adsorbed in slit and cylindrical nanopores at low density, considering the axial momentum gain of molecules oscillating between diffuse wall reflections. Good agreement with molecular dynamics simulations is obtained over a wide range of pore sizes, including the regime of single-file diffusion where fluid-fluid interactions are shown to have a negligible effect on the collective transport coefficient. We show that dispersive fluid-wall interactions considerably attenuate transport compared to classical hard sphere theory.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyI vinyl ether), PFA, was grafted with styrene from the vapor phase using a simultaneous radiation grafting method. The graft yields were measured as a function of the dose and dose rate and were found to be initially linearly dependent on the dose and independent of the dose rate up to dose rates of similar to3 kGy/h. However, at a dose rate of 6.2 kGy/h, the slope of the yield-grafting time plot decreased. Raman depth profiles of the grafts showed that the polystyrene concentrations were greatest near the surface of the grafted samples and decreased with depth. The maximum penetration depth of the graft depended on the radiation dose for a fixed dose rate. Fmoc-Rink loading tests showed that the grafts displayed superior loading compared to grafts prepared from bulk styrene or from styrene solutions other than methanol.