152 resultados para GEOSCIENCES, MULTIDISCIPLINARY
Resumo:
The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.
Resumo:
For the Western-Pacific region spread-F has been found to occur with delays after geomagnetic activity (GA) ranging from 5 to 10 days as station groups are considered from low midlatitudes to equatorial regions. The statistical (superposed-epoch) analyses also indicate that at the equator the spread-F, and therefore associated medium-scale traveling ionospheric disturbances (MS-TIDs) occur with additional delays around 16, 22 and 28 days representing a 6-day modulation of the delay period. These results are compared with similar delays, including the modulation, for D-region enhanced hydroxyl emission (Shefov, 1969). It is proposed that this similarity may be explained by MS-TIDs influencing both the F and D regions as they travel. Long delays of over 20 days are also found near the equator for airglow-measured MS-TIDs (Sobral et al., 1997). These are recorded infrequently and have equatorward motions, while normally eastward motions are measured at the equator. Also in midlatitudes D-region absorption events have been shown (statistically) to have similar long delays after GA. It is suggested that atmospheric gravity waves and associated MS-TIDs may be generated by some of the precipitations responsible for the absorption. The recording of the delayed spread-F events depends on the GA being well below the average levels around sunset on the nights of recording. This implies that lower upper-atmosphere neutral particle densities are necessary.
Resumo:
Use of nonlinear parameter estimation techniques is now commonplace in ground water model calibration. However, there is still ample room for further development of these techniques in order to enable them to extract more information from calibration datasets, to more thoroughly explore the uncertainty associated with model predictions, and to make them easier to implement in various modeling contexts. This paper describes the use of pilot points as a methodology for spatial hydraulic property characterization. When used in conjunction with nonlinear parameter estimation software that incorporates advanced regularization functionality (such as PEST), use of pilot points can add a great deal of flexibility to the calibration process at the same time as it makes this process easier to implement. Pilot points can be used either as a substitute for zones of piecewise parameter uniformity, or in conjunction with such zones. In either case, they allow the disposition of areas of high and low hydraulic property value to be inferred through the calibration process, without the need for the modeler to guess the geometry of such areas prior to estimating the parameters that pertain to them. Pilot points and regularization can also be used as an adjunct to geostatistically based stochastic parameterization methods. Using the techniques described herein, a series of hydraulic property fields can be generated, all of which recognize the stochastic characterization of an area at the same time that they satisfy the constraints imposed on hydraulic property values by the need to ensure that model outputs match field measurements. Model predictions can then be made using all of these fields as a mechanism for exploring predictive uncertainty.
Resumo:
Mesoproterozoic marine successions worldwide record a shift in average delta(13)C values from 0 to +3.5parts per thousand, with the latter value evident in successions younger than 1250 Ma. New carbon isotope data from the similar to 1300 to 1270 Ma Dismal Lakes Group, Arctic Canada, provide further insight into this fundamental transition. Data reveal that the shift to higher VC values was gradual and marked by occasional excursions to values less than 0 parts per thousand. When compared to records from older and younger marine successions, it is evident that the difference between isotopic minima and maxima increased with time, indicating that the marine system evolved to become isotopically more variable. We interpret these patterns to record an increase in the crustal inventory of organic carbon, reflecting eukaryotic diversification and a change in the locus of organic carbon burial to include anoxic deep marine sites where preservation potential was high. We speculate that the release of O-2 to Earth's surface environments associated with increased organic carbon storage induced irreversible changes in the Mesoproterozoic biosphere, presaging the more extreme environmental and evolutionary developments of the Neoproterozoic.
Resumo:
The Shoemaker impact structure, on the southern margin of the Palaeoproterozoic Earaheedy Basin, with an outer diameter of similar to30 km, consists of two well-defined concentric ring structures surrounding a granitoid basement uplift. The concentric structures, including a ring syncline and a ring anticline, formed in sedimentary rocks of the Earaheedy Group. In addition, aeromagnetic and geological field observations suggest that Shoemaker is a deeply eroded structure. The central 12 km-diameter uplift consists of fractured Archaean basement granitoids of syenitic composition (Teague Granite). Shock-metamorphic features include shatter cones in sedimentary rocks and planar deformation features in quartz crystals of the Teague Granite. Universal-stage analysis of 51 sets of planar deformation features in 18 quartz grains indicate dominance of sets parallel to omega (10 (1) over bar3}, but absence of sets parallel to pi (10 (1) over bar2}, implying peak shock pressures in the range of 10-20 GPa for the analysed sample. Geophysical characteristics of the structure include a -100 mus(-2) gravity anomaly coincident with the central uplift and positive circular trends in both magnetic and gravity correlating with the inner ring syncline and outer ring anticline. The Teague Granite is dominated by albite-quartz-K-feldspar with subordinate amounts of alkali pyroxene. The alkali-rich syenitic composition suggests it could either represent a member of the Late Archaean plutonic suite or the product of alkali metasomatism related to impact-generated hydrothermal activity. In places, the Teague Granite exhibits partial to pervasive silicification and contains hydrothermal minerals, including amphibole, garnet, sericite and prehnite. Recent isotopic age studies of the Teague Granite suggest an older age limit of ca 1300 Ma (Ar-Ar on K-feldspar) and a younger age limit of ca 568 Ma (K-Ar on illite-smectite). The significance of the K-Ar age of 568 Ma is not clear, and it might represent either hydrothermal activity triggered by impact-related energy or a possible resetting by tectonothermal events in the region.
Resumo:
We present high spatial resolution ion-microprobe rare earth element (REE) data for discrete growth phases of complex polyphase zircons from early Archaean Amitsoq gneisses, outer Godthabsfjord, SW Greenland. In Matsuda diagrams, the two major growth phases, >3.8 Ga cores and ca. 3.65 Ga rims, have steep positive slopes from La to Lu, prominent positive Ce anomalies and negative Eu anomalies that are consistent with growth in a melt. Exceptions to this are non-cathodolurnmescent zircon developed between the cores and rims, sometimes truncating zoning in the cores, and late Archaean prismatic tip overgrowths, both of which exhibit flatter light REE (LREE) patterns and have small or no Eu anomaly, which we interpret as the result of metamorphism and/or small-degree, isolated partial melting. Our data support previous interpretations that the ca. 3.65 Ga zircon phase was generated in a melt, with the >3.8 Ga phase representing either original protolith zircons in a large degree partial melt or inherited zircons in an introduced magma. Regardless which of these two interpretations is correct for these, and similar, rocks in the outer GodthAbsfjord, the 3.65 Ga event will have profoundly affected isotopic systems and obscured beyond recognition any earlier igneous features such as cross-cutting relationships, which may only be assigned a minimum 3.65 Ga age. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
New high-precision niobium (Nb) and tantalum (Ta) concentration data are presented for early Archaean metabasalts, metabasaltic komatiites and their erosion products (mafic metapelites) from SW Greenland and the Acasta gneiss complex, Canada. Individual datasets consistently show sub-chondritic Nb/Ta ratios averaging 15.1+/-11.6. This finding is discussed with regard to two competing models for the solution of the Nb-deficit that characterises the accessible Earth. Firstly, we test whether Nb could have sequestered into the core due to its slightly siderophile (or chalcophile) character under very reducing conditions, as recently proposed from experimental evidence. We demonstrate that troilite inclusions of the Canyon Diablo iron meteorite have Nb and V concentrations in excess of typical chondrites but that the metal phase of the Grant, Toluca and Canyon Diablo iron meteorites do not have significant concentrations of these lithophile elements. We find that if the entire accessible Earth Nb-deficit were explained by Nb in the core, only ca. 17% of the mantle could be depleted and that by 3.7 Ga, continental crust would have already achieved ca. 50% of its present mass. Nb/Ta systematics of late Archaean metabasalts compiled from the literature would further require that by 2.5 Ga, 90% of the present mass of continental crust was already in existence. As an alternative to this explanation, we propose that the average Nb/Ta ratio (15.1+/-11.6) of Earth's oldest mafic rocks is a valid approximation for bulk silicate Earth. This would require that ca. 13% of the terrestrial Nb resided in the Ta-free core. Since the partitioning of Nb between silicate and metal melts depends largely on oxygen fugacity and pressure, this finding could mean that metal/silicate segregation did not occur at the base of a deep magma ocean or that the early mantle was slightly less reducing than generally assumed. A bulk silicate Earth Nb/Ta ratio of 15.1 allows for depletion of up to 40% of the total mantle. This could indicate that in addition to the upper mantle, a portion of the lower mantle is depleted also, or if only the upper mantle were depleted, an additional hidden high Nb/Ta reservoir must exist. Comparison of Nb/Ta systematics between early and late Archaean metabasalts supports the latter idea and indicates deeply subducted high Nb/Ta eclogite slabs could reside in the mantle transition zone or the lower mantle. Accumulation of such slabs appears to have commenced between 2.5 and 2.0 Ga. Regardless of these complexities of terrestrial Nb/Ta systematics, it is shown that the depleted mantle Nb/Th ratio is a very robust proxy for the amount of extracted continental crust, because the temporal evolution of this ratio is dominated by Th-loss to the continents and not Nb-retention in the mantle. We present a new parameterisation of the continental crust volume versus age curve that specifically explores the possibility of lithophile element loss to the core and storage of eclogite slabs in the transition zone. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Twelve Late Quaternary TIMS U-Th ages are reported here from 10 coral samples collected in situ from five transgressive coral/algal raised reefs (height: max. 113 m, min. 8 m) and two raised lagoonal deposits (height: max. 18 m, min. 8 m) along and near the west coast of Tanna, which lies in the Median Sedimentary Basin of South Vanuatu, southwest Pacific. These reefs and raised lagoonal deposits represent several age groups: (i) 215 ka (marine oxygen-isotope stage 7) penultimate interglacial (highest elevation and oldest); (ii) one lagoonal deposit of ca 127 ka (marine oxygen-isotope stage 5e); (iii) three last interglacial reefs with ages 102, 89 and 81 ka (representing marine oxygen-isotope stages 5c, 5b and 5a, respectively, of the latter part of the last interglacial); (iv) a lagoonal deposit with a 92 ka age (5b); and (v) a Holocene reef (age >5.7-5.0 ka) (lowest elevation and youngest). A ca 4.9 ka regressive reef (at elevation of 1.5 m above sea-level) is consistent with an island-wide 6.5 m uplift (probably largely coseismic), and a probable further island-wide uplift occurred in the late Holocene. The U-series ages taken together with the heights of transgressive reefs show that uplift since 215 ka was, on average, at similar to0.52 mm/y; although since 5 ka the uplift rate was, on average, similar to1.6 mm/y (the assumption being that a 1.5 m above sea-level reef has a coseismic origin). Elevation of transgressive reefs 5a, 5b and 5c and their ages indicates an island-wide subsidence during the period ?124-89 ka (i.e. Late Quaternary uplift/subsidence was jerky). Late Quaternary uplift/subsidence on the northwest coast of Tanna is considered to be due to irregular thicknesses of crust being subducted beneath Tanna.
Resumo:
A much-revised Quaternary stratigraphy is presented for ignimbrites and pumice fall deposits of the Bandas del Sur, in southern Tenerife. New Ar-41/Ar-39 data obtained for the Arico, Granadilla, Fasnia, Poris, La Caleta and Abrigo formations are presented, allowing correlation with previously dated offshore marine ashfall layers and volcaniclastic sediments. We also provide a minimum age of 287 +/- 7 ka for a major sector collapse event at the Gaimar valley. The Bandas del Sur succession includes more than seven widespread ignimbrite sheets that have similar characteristics, including widespread basal Plinian layers, predominantly phonolite composition, ignimbrites with similar extensive geographic distributions, thin condensed veneers with abundant diffuse bedding and complex lateral and vertical grading patterns, lateral gradations into localized massive facies within palaeo-wadis, and widespread lithic breccia layers that probably record caldera-forming eruptions. Each ignimbrite sheet records substantial bypassing of pyroclastic material into the ocean. The succession indicates that Las Canadas volcano underwent a series of major explosive eruptions, each starting with a Plinian phase followed by emplacement of ignimbrites and thin ash layers, some of coignimbrite origin. Several of the ignimbrite sheets are compositionally zoned and contain subordinate mafic pumices and banded pumices indicative of magma mingling immediately prior to eruption. Because passage of each pyroclastic density current was characterized by phases of non-deposition and erosion, the entire course of each eruption is incompletely recorded at any one location, accounting for some previously perceived differences between the units. Because each current passed into the ocean, estimating eruption volumes is virtually impossible. Nevertheless, the consistent widespread distributions and the presence of lithic breccias within most of the ignimbrite sheets suggest that at least seven caldera collapse eruptions are recorded in the Bandas del Sur succession and probably formed a complex, nested collapse structure. Detailed field relationships show that extensive ignimbrite sheets (e.g. the Arico, Poris and La Caleta formations) relate to previously unrecognized caldera collapse events. We envisage that the evolution of the nested Las Cahadas caldera is more complex than previously thought and involved a protracted history of successive ignimbrite-related caldera collapse events, and large sector collapse events, interspersed with edifice-building phases.
Resumo:
Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.
Resumo:
Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and clarifies relationships that may be useful for model-based approaches. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.