64 resultados para Flue gases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model describing coherent quantum tunnelling between two trapped Bose-Einstein condensates is discussed. It is not well known that the model admits an exact solution, obtained some time ago, with the energy spectrum derived through the algebraic Bethe ansatz. An asymptotic analysis of the Bethe ansatz equations leads us to explicit expressions for the energies of the ground and the first excited states in the limit of weak tunnelling and all energies for strong tunnelling. The results are used to extract the asymptotic limits of the quantum fluctuations of the boson number difference between the two Bose-Einstein condensates and to characterize the degree of coherence in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing demand for efficient air quality management calls for the development of technologies capable of meeting the stringent requirements now being applied in areas of chemical, biological and medical activities. Currently, filtration is the most effective process available for removal of fine particles from carrier gases. Purification of gaseous pollutants is associated with adsorption, absorption and incineration. In this paper we discuss a new technique for highly efficient simultaneous purification of gaseous and particulate pollutants from carrier gases, and investigate the utilization of Nuclear Magnetic Resonance (NMR) imaging for the study of the dynamic processes associated with gas-liquid flow in porous media. Our technique involves the passage of contaminated carrier gases through a porous medium submerged into a liquid, leading to the formation of narrow and tortuous pathways through the medium. The wet walls of these pathways result in outstanding purification of gaseous, liquid and solid alien additives. NMR imaging was successfully used to map the gas pathways inside the porous medium submerged into the liquid layer. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon. (C) 2003 Elsevier Ltd. All rights reserved.