170 resultados para Finite-dimensional spaces
Resumo:
The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.
Resumo:
The problem of extracting pore size distributions from characterization data is solved here with particular reference to adsorption. The technique developed is based on a finite element collocation discretization of the adsorption integral, with fitting of the isotherm data by least squares using regularization. A rapid and simple technique for ensuring non-negativity of the solutions is also developed which modifies the original solution having some negativity. The technique yields stable and converged solutions, and is implemented in a package RIDFEC. The package is demonstrated to be robust, yielding results which are less sensitive to experimental error than conventional methods, with fitting errors matching the known data error. It is shown that the choice of relative or absolute error norm in the least-squares analysis is best based on the kind of error in the data. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.
Resumo:
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].
Resumo:
Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
The assessment of groundwater conditions within an unconfined aquifer with a periodic boundary condition is of interest in many hydrological and environmental problems. A two-dimensional numerical model for density dependent variably saturated groundwater flow, SUTRA (Voss, C.I., 1984. SUTRA: a finite element simulation model for saturated-unsaturated, fluid-density dependent ground-water flow with energy transport or chemically reactive single species solute transport. US Geological Survey, National Center, Reston, VA) is modified in order to be able to simulate the groundwater flow in unconfined aquifers affected by a periodic boundary condition. The basic flow equation is changed from pressure-form to mixed-form. The model is also adjusted to handle a seepage-face boundary condition. Experiments are conducted to provide data for the groundwater response to the periodic boundary condition for aquifers with both vertical and sloping faces. The performance of the numerical model is assessed using those data. The results of pressure- and mixed-form approximations are compared and the improvement achieved through the mixed-form of the equation is demonstrated. The ability of the numerical model to simulate the water table and seepage-face is tested by modelling some published experimental data. Finally the numerical model is successfully verified against present experimental results to confirm its ability to simulate complex boundary conditions like the periodic head and the seepage-face boundary condition on the sloping face. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Previous work on generating state machines for the purpose of class testing has not been formally based. There has also been work on deriving state machines from formal specifications for testing non-object-oriented software. We build on this work by presenting a method for deriving a state machine for testing purposes from a formal specification of the class under test. We also show how the resulting state machine can be used as the basis for a test suite developed and executed using an existing framework for class testing. To derive the state machine, we identify the states and possible interactions of the operations of the class under test. The Test Template Framework is used to formally derive the states from the Object-Z specification of the class under test. The transitions of the finite state machine are calculated from the derived states and the class's operations. The formally derived finite state machine is transformed to a ClassBench testgraph, which is used as input to the ClassBench framework to test a C++ implementation of the class. The method is illustrated using a simple bounded queue example.
Resumo:
We demonstrate a three-dimensional scanning probe microscope in which the extremely soft spring of an optical tweezers trap is used. Feedback control of the instrument based on backscattered light levels allows three-dimensional imaging of microscopic samples in an aqueous environment. Preliminary results with a 2-mu m-diameter spherical probe indicate that features of approximately 200 nm can be resolved, with a sensitivity of 5 nm in the height measurement. The theoretical resolution is limited by the probe dimensions. (C) 1999 Optical Society of America.