267 resultados para FLOW MODELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptidergic mechanisms influencing the resistance of the gastrointestinal vascular bed of the estuarine crocodile, Crocodylus porosus, were investigated. The gut was perfused in situ via the mesenteric and the celiac arteries, and the effects of different neuropeptides were tested using bolus injections. Effects on vascular resistance were recorded as changes in inflow pressures. Peptides found in sensory neurons [substance P, neurokinin A, and calcitonin gene-related peptide (CGRP)] all caused significant relaxation of the celiac vascular bed, as did vasoactive intestinal polypeptide (VIP), another well-known vasodilator. Except for VIP, the peptides also induced transitory gut contractions. Somatostatin and neuropeptide Y (NPY), which coexist in adrenergic neurons of the C. porosus, induced vasoconstriction in the celiac vascular bed without affecting the gut motility. Galanin caused vasoconstriction and occasionally activated the gut wall. To elucidate direct effects on individual vessels, the different peptides were tested on isolated ring preparations of the mesenteric and celiac arteries. Only CGRP and VIP relaxed the epinephrine-precontracted celiac artery, whereas the effects on the mesenteric artery were variable. Somatostatin and NPY did not affect the resting tonus of these vessels, but somatostatin potentiated the epinephrine-induced contraction of the celiac artery. Immunohistochemistry revealed the existence and localization of the above-mentioned peptides in nerve fibers innervating vessels of different sizes in the gut region. These data support the hypothesis of an important role for neuropeptides in the control of the vascular bed of the gastrointestinal tract in C. porosus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ex vivo hematopoiesis is increasingly used for clinical applications. Models of ex vivo hematopoiesis are required to better understand the complex dynamics and to optimize hematopoietic culture processes. A general mathematical modeling framework is developed which uses traditional chemical engineering metaphors to describe the complex hematopoietic dynamics. Tanks and tubular reactors are used to describe the (pseudo-) stochastic and deterministic elements of hematopoiesis, respectively. Cells at any point in the differentiation process can belong to either an immobilized, inert phase (quiescent cells) or a mobile, active phase (cycling cells). The model describes five processes: (1) flow (differentiation), (2) autocatalytic formation (growth),(3) degradation (death), (4) phase transition from immobilized to mobile phase (quiescent to cycling transition), and (5) phase transition from mobile to immobilized phase (cycling to quiescent transition). The modeling framework is illustrated with an example concerning the effect of TGF-beta 1 on erythropoiesis. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is recognized that vascular dispersion in the liver is a determinant of high first-pass extraction of solutes by that organ. Such dispersion is also required for translation of in-vitro microsomal activity into in-vivo predictions of hepatic extraction for any solute. We therefore investigated the relative dispersion of albumin transit times (CV2) in the livers of adult and weanling rats and in elasmobranch livers. The mean and normalized variance of the hepatic transit time distribution of albumin was estimated using parametric non-linear regression (with a correction for catheter influence) after an impulse (bolus) input of labelled albumin into a single-pass liver perfusion. The mean +/- s.e. of CV2 for albumin determined in each of the liver groups were 0.85 +/- 0.20 (n = 12), 1.48 +/- 0.33 (n = 7) and 0.90 +/- 0.18 (n = 4) for the livers of adult and weanling rats and elasmobranch livers, respectively. These CV2 are comparable with that reported previously for the dog and suggest that the CV2 Of the liver is of a similar order of magnitude irrespective of the age and morphological development of the species. It might, therefore, be justified, in the absence of other information, to predict the hepatic clearances and availabilities of highly extracted solutes by scaling within and between species livers using hepatic elimination models such as the dispersion model with a CV2 of approximately unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical approach to the stress development in the coherent dendritic network during solidification is proposed. Under the assumption that stresses are developed in the network as a result of the friction resisting shrinkage-induced interdendritic fluid flow, the model predicts the stresses in the solid. The calculations reflect the expected effects of postponed dendrite coherency, slower solidification conditions, and variations of eutectic volume fraction and shrinkage. Comparing the calculated stresses to the measured shear strength of equiaxed mushy zones shows that it is possible for the stresses to exceed the strength, thereby resulting in reorientation or collapse of the dendritic network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wildlife-habitat models are an important tool in wildlife management toda?, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show useful predictive st;ill. We demonstrate that six critical assumptions underlie distribution based wildlife-habitat models, all of which must be valid for the model to predict habitat quality. We outline these assumptions in a mete-model, and discuss methods for their validation. Even where all sis assumptions show a high level of validity, there is still a strong likelihood that the model will not predict habitat quality. However, the meta-model does suggest habitat quality can be predicted more accurately if distributional data are ignored, and variables more indicative of habitat quality are modelled instead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of N-2 respiration on cerebral blood flow (CBF) velocity on the dorsal surface of cerebellum was examined in the estuarine crocodile, Crocodylus porosus, using epi-illumination microscopy. Twelve minutes of N-2 respiration resulted in a 126% increase in CBF velocity. N-2 respiration had no effect on blood pressure, indicating an underlying cerebral vasodilation. In addition, heart rate increased significantly. Systemic injections of aminophylline and the NO synthase (NOS) inhibitor nitro-L-arginine (L-NA) did not affect the hypoxia induced increase in CBF. We conclude that C. porosus responds to hypoxia with adenosine and nitric oxide (NO) independent cerebral vasodilation, and that this is likely to be a mechanism protecting the brain from energy deficiency during prolonged dives. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical nonequilibrium of solute concentration resulting from preferential now of soil water has often led to models where the soil is partitioned into two regions: preferential flow paths, where solute transport occurs mainly by advection, and the remaining region, where significant solute transport occurs through diffusive exchange with the flow paths. These two-region models commonly ignore concentration gradients within the regions. Our objective was to develop a simple model to assess the influence of concentration gradients on solute transport and to compare model results with experiments conducted on structured materials. The model calculates the distribution of solutes in a single spherical aggregate surrounded by preferential now paths and subjected to alternating boundary conditions representing either an exchange of solutes between the two regions (a wet period) or no exchange but redistribution of solutes within the aggregate (a dry period). The key parameter in the model is the aggregate radius, which defines the diffusive time scales. We conducted intermittent leaching experiments on a column of packed porous spheres and on a large (300 mm long by 216 mm diameter) undisturbed field soil core to test the validity of the model and its application to field soils. Alternating wet and dry periods enhanced leaching by up to 20% for this soil, which was consistent with the model's prediction, given a fitted equivalent aggregate radius of 1.8 cm, If similar results are obtained for other soils, use of alternating wet and dry periods could improve management of solutes, for example in salinity control and in soil remediation.