130 resultados para Extended Hubbard resonance bound state Bethe ansatz scattering length one dimension
Resumo:
We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.
Resumo:
We study the level-one irreducible highest weight representations of the quantum affine superalgebra U-q[sl((N) over cap\1)], and calculate their characters and supercharacters. We obtain bosonized q-vertex operators acting on the irreducible U-q[sl((N) over cap\1)] modules and derive the exchange relations satisfied by the vertex operators. We give the bosonization of the multicomponent super t-J model by using the bosonized vertex operators. (C) 2000 American Institute of Physics. [S0022- 2488(00)00508-9].
Resumo:
In quantum measurement theory it is necessary to show how a, quantum source conditions a classical stochastic record of measured results. We discuss mesoscopic conductance using quantum stochastic calculus to elucidate the quantum nature of the measurement taking place in these systems. To illustrate the method we derive the current fluctuations in a two terminal mesoscopic circuit with two tunnel barriers containing a single quasi bound state on the well. The method enables us to focus on either the incoming/ outgoing Fermi fields in the leads, or on the irreversible dynamics of the well state itself. We show an equivalence between the approach of Buttiker and the Fermi quantum stochastic calculus for mesoscopic systems.
Resumo:
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2 \2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
Resumo:
A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.
Resumo:
We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement.
Resumo:
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.
Resumo:
A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Furthermore, a connection with perturbed conformal field theory is made.
Resumo:
We extend a recent construction for an integrable model describing Josephson tunneling between identical BCS systems to the case where the BCS systems have different single particle energy levels. The exact solution of this generalized model is obtained through the Bethe ansatz.
Resumo:
Supersymmetric t-J Gaudin models with open boundary conditions are investigated by means of the algebraic Bethe ansatz method. Off-shell Bethe ansatz equations of the boundary Gaudin systems are derived, and used to construct and solve the KZ equations associated with sl (2\1)((1)) superalgebra.
Resumo:
Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.
Resumo:
A model describing coherent quantum tunnelling between two trapped Bose-Einstein condensates is discussed. It is not well known that the model admits an exact solution, obtained some time ago, with the energy spectrum derived through the algebraic Bethe ansatz. An asymptotic analysis of the Bethe ansatz equations leads us to explicit expressions for the energies of the ground and the first excited states in the limit of weak tunnelling and all energies for strong tunnelling. The results are used to extract the asymptotic limits of the quantum fluctuations of the boson number difference between the two Bose-Einstein condensates and to characterize the degree of coherence in the system.
Resumo:
Two different types of integrable impurities in a spin ladder system are proposed. The impurities are introduced in such a way that the integrability of the models is not violated. The models are solved exactly with the Bethe ansatz equations as well as the energy eigenvalues obtained. We show for both models that a phase transition between gapped and gapless spin excitations occurs at a critical value of the rung coupling J. In addition, the dependence of the impurities on this phase transition is determined explicitly. In one of the models the spin gap decreases by increasing the impurity strength A. Moreover, for a fixed A, a reduction in the spin gap by increasing the impurity concentration is also observed.
Resumo:
We present two integrable spin ladder models which possess a general free parameter besides the rung coupling J. The models are exactly solvable by means of the Bethe ansatz method and we present the Bethe ansatz equations. We analyze the elementary excitations of the models which reveal the existence of a gap for both models that depends on the free parameter. (C) 2003 American Institute of Physics.