67 resultados para Engineering, Electronics and Electrical|Artificial Intelligence
Resumo:
This paper examines the effects of information request ambiguity and construct incongruence on end user's ability to develop SQL queries with an interactive relational database query language. In this experiment, ambiguity in information requests adversely affected accuracy and efficiency. Incongruities among the information request, the query syntax, and the data representation adversely affected accuracy, efficiency, and confidence. The results for ambiguity suggest that organizations might elicit better query development if end users were sensitized to the nature of ambiguities that could arise in their business contexts. End users could translate natural language queries into pseudo-SQL that could be examined for precision before the queries were developed. The results for incongruence suggest that better query development might ensue if semantic distances could be reduced by giving users data representations and database views that maximize construct congruence for the kinds of queries in typical domains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
In this paper we present a technique for visualising hierarchical and symmetric, multimodal fitness functions that have been investigated in the evolutionary computation literature. The focus of this technique is on landscapes in moderate-dimensional, binary spaces (i.e., fitness functions defined over {0, 1}(n), for n less than or equal to 16). The visualisation approach involves an unfolding of the hyperspace into a two-dimensional graph, whose layout represents the topology of the space using a recursive relationship, and whose shading defines the shape of the cost surface defined on the space. Using this technique we present case-study explorations of three fitness functions: royal road, hierarchical-if-and-only-if (H-IFF), and hierarchically decomposable functions (HDF). The visualisation approach provides an insight into the properties of these functions, particularly with respect to the size and shape of the basins of attraction around each of the local optima.