63 resultados para Emission rates
Resumo:
Background Patients with known or suspected coronary disease are often investigated to facilitate risk assessment. We sought to examine the cost-effectiveness of strategies based on exercise echocardiography and exercise electrocardiography. Methods and results We studied 7656 patients undergoing exercise testing; of whom half underwent exercise echocardiography. Risk was defined with the Duke treadmill score for those undergoing exercise electrocardiography alone, and by the extent of ischaemia by exercise echocardiography. Cox proportional hazards models, risk adjusted for pretest likelihood of coronary artery disease, were used to estimate time to cardiac death or myocardial infarction. Costs (including diagnostic and revascularisation procedures, hospitalisations, and events) were calculated, inflation-corrected to year 2000 using Medicare trust fund rates and discounted at a rate of 5%. A decision model was employed to assess the marginal cost effectiveness (cost/life year saved) of exercise echo compared with exercise electrocardiography. Exercise echocardiography identified more patients as low-risk (51% vs 24%, p<0.001), and fewer as intermediate- (27% vs 51%, p<0.001) and high-risk (22% vs 4%); survival was greater in low- and intermediate- risk and less in high-risk patients. Although initial procedural costs and revascularisation costs (in intermediate- high risk patients) were greater, exercise echocardiography was associated with a greater incremental life expectancy (0.2 years) and a lower use of additional diagnostic procedures when compared with exercise electrocardiography (especially in lower risk patients). Using decision analysis, exercise echocardiography (Euro 2615/life year saved) was more cost effective than exercise electrocardiography. Conclusion Exercise echocardiography may enhance cost-effectiveness for the detection and management of at risk patients with known or suspected coronary disease. (C) 2003 Published by Elsevier Science Ltd on behalf of The European Society of Cardiology.
Resumo:
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.