62 resultados para Diffuse Suffering


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radio frequency (RF) plasma-modified surfaces of kaolinite were investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and deuteration techniques to determine the nature of RF plasma-induced surface functional groups, the altered sites in the lattice, and interaction mechanism between RF plasma and the surface of the kaolinite. It has been concluded that the RF plasma-induced infrared (IR) vibration absorption bands at 2805, 3010, and 3100 cm(-1) are attributable to the stretching vibration of hydrogen-bonded hydroxyl groups, and the band at 1407 cm(-1) is attributable to the bending vibration of (HO-)Al-O or (HO-)Si-O groupings with hydrogen-bonded hydroxyl groups. Structural alteration occurred on both the surface and subsurface region of the kaolinite during RF plasma treatment. Further structural alteration or adjustment was also observed on well-modified and well-deuterated kaolinite. There are two types of OD bands visible in the DRIFT spectra of this kaolinite, one type which decreased rapidly as a function of time in moist air, and the other which remained unchanged during the measurement. Furthermore, the appearance of broad IR bands at 3500-3100 cm(-1) as a result of deuteration is evidence of structural disturbance by RF plasma treatment lattice deuteration. An RF plasma-induced hydrogen bonding model on the surface of the kaolinite is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a theory for the transport of molecules adsorbed in slit and cylindrical nanopores at low density, considering the axial momentum gain of molecules oscillating between diffuse wall reflections. Good agreement with molecular dynamics simulations is obtained over a wide range of pore sizes, including the regime of single-file diffusion where fluid-fluid interactions are shown to have a negligible effect on the collective transport coefficient. We show that dispersive fluid-wall interactions considerably attenuate transport compared to classical hard sphere theory.