75 resultados para Corals -- Monitoring
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Therapeutic drug monitoring of cyclosporin (CsA) has been established as part of the routine clinical treatment of patients following organ transplantation for more than 20 years, and based on contemporary knowledge, many consensus guidelines have been published to assist clinics and laboratories attain optimal strategies for patient care. This article addresses the newer directions in CsA monitoring, with particular reference to the Australasian situation that has evolved since the 1993 Australasian guideline (1). These changes have included the introduction of alternative assay methodologies, changed CsA formulation from Sandimmun to Neoral throughout Australasia, and alternatives to trough concentration (C0) monitoring, especially 2-hour concentration (C2) monitoring and associated validated dilution protocols to accurately quantitate the higher whole blood CsA concentrations. The revision was prepared following a recent survey of all Australasian CsA-monitoring laboratories (2) where discordant practices were evident.
Testing the applicability of molecular genetic markers to population analyses of scleratinian corals
Resumo:
The abundance of coral reefs worldwide is in decline, and despite the ecological importance of reefs, only a limited number of DNA markers have been identified for scleractinian coral genetic studies. This paper addresses the search for new coral molecular markers and investigates the applicability of the cytochrome c oxidase subunit I (COI), the internal transcribed spacer region 1 (ITS1), and the pocilloporin gene to the question of intraspecific variation in the scleractinian coral Pocillopora verrucosa along the southeast African coastline. The COI fragment was 710 bp long and was identical for P. verrucosa (n = 10) and P. damicornis (n = 3). Only two different ITS1 sequences were found (differing by 13 bp insertion), but more importantly, 24% of the sequences were heterogenous indicating that different multiple copies of the sequence exist. Pocilloporin is an intronless gene that was absolutely conserved throughout all P. verrucosa populations (n = 50). Thus, the three DNA regions studied appear unsuitable for the population genetic analyses of P. verrucosa.
Resumo:
In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae(-1) in corals, 0.16 to 2.96 nmol DMSP cm(-2) (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae(-1) (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean= 371 fmol DMSP zooxanthellae(-1)) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae(-1)) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 finol zooxanthellae(-1), whilst the non-bleaching colony contained DMSP at an average concentration of 171 finol zooxanthellae(-1). The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0.015 mmol m(-2)) and corals (mean=2.22 mmol m(-2)) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The fundamental role of dendritic cells (DC in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, we carefully documented BDC counts, yields and subsets during apheresis (Cobe Spectra), the initial and essential procedure in creating a BDC isolation platform for cancer immunotherapy. We established that an automated software package (Version 6,0 AutoPBPC) provides an operator-independent reliable source of motionuclear cells (MNC for BDC preparation. Further, we observed that BDC might be recovered in high yields, often greater than 100% relative to the number of circulating BDC predicted by blood volume. An average of 66 million (range, 17-179) BDC per 10-1 procedure were obtained, largely satisfying the needs for immunization. Higher yields were possible on total processed blood volumes of 151. BDC were not activated by the isolation procedure and, more importantly, both BDC subsets (CD11c(+)CD123(low) and CD11c(-)CD123(high)) were equally represented. Finally, we established that the apheresis product could be used for antibody-based BDC immunoselection and demonstrated that fully functional BDC can be obtained by this procedure. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
In response to recent reports of contamination of the nearshore marine environment along the Queensland coast by herbicides (including areas inside the Great Barrier Reef Marine Park), an ecotoxicological assessment was conducted of the impact of the herbicides diuron and atrazine on scleractinian corals. Pulse-amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the herbicide effects on the symbiotic dinoflagellates within the tissues (in hospite) of 4 species of coral (Acropora formosa, Montipora digitata, Porites cylindrica, Seriatopora hystrix) in static toxicity tests, and in freshly isolated symbiotic dinoflagellates from Stylophora pistillata. Using change in the effective quantum yield (DeltaF/F-m') as an effect criterion, diuron (no observable effect concentration, NOEC = 0.3 mug 1(-1); lowest observable effect concentration, LOEC = 1 mug 1(-1); median effective concentration, EC50 4 to 6 mug 1(-1)) was found to be more toxic than atrazine (NOEC = 1 mug 1(-1), LOEC = 3 mug 1(-1), EC50 40 to 90 mug 1(-1)) in short-term (10 h) toxicity tests. In the tests with isolated algae, significant reductions in DeltaF/F-m' were recorded as low as 0.25 mug 1(-1) diuron (LOEC, EC50 = 5 mug 1(-1)). Time-course experiments indicated that the effects of diuron were rapid and reversible. At 10 mug 1(-1) diuron, DeltaF/F-m' was reduced by 25% in 20 to 30 min, and by 50% in 60 to 90 min. Recovery of DeltaF/F-m' in corals exposed to 10 mug 1(-1) diuron and then transferred to running seawater was slower, returning to within 10% of control values inside 1 to 7 h. The effect of a reduction in salinity (35 to 27%) on diuron toxicity (at 1 and 3 mug 1(-1) diuron) was tested to examine the potential consequences of contaminated coastal flood plumes inundating inshore reefs. DeltaF/F-m' was reduced in the diuron-exposed corals, but there was no significant interaction between diuron and reduced salinity seawater within the 10 h duration of the test. Exposure to higher (100 and 1000 mug 1(-1)) diuron concentrations for 96 h caused a reduction in DeltaF/F-m' the ratio variable to maximal fluorescence (F,1F.), significant loss of symbiotic dinoflagellates and pronounced tissue retraction, causing the corals to pale or bleach. The significance of the results in relation to diuron contamination of the coastal marine environment from terrestrial sources (mainly agricultural) and marine sources (antifouling paints) are discussed.