81 resultados para Coral reefs and islands -- Remote sensing
Resumo:
Using Landsat imagery, forest canopy density (FCD) estimated with the FCD Mapper®, was correlated with predominant height (PDH, measured as the average height of the tallest 50 trees per hectare) for 20 field plots measured in native forest at Noosa Heads, south-east Queensland, Australia. A corresponding image was used to calculate FCD in Leyte Island, the Philippines and was validated on the ground for accuracy. The FCD Mapper was produced for the International Tropical Timber Organisation and estimates FCD as an index of canopy density using reflectance characteristics of Landsat Enhanced Thematic (ETM) Mapper images. The FCD Mapper is a ‘semi-expert’ computer program which uses interactive screens to allow the operator to make decisions concerning the classification of land into bare soil, grass and forest. At Noosa, a positive strong nonlinear relationship (r2 = 0.86) was found between FCD and PDH for 15 field plots with variable PDH but complete canopy closure. An additional five field plots were measured in forest with a broken canopy and the software assessed these plots as having a much lower FCD than forest with canopy closure. FCD estimates for forest and agricultural land in the island of Leyte and subsequent field validation showed that at appropriate settings, the FCD Mapper differentiated between tropical rainforest and banana or coconut plantation. These findings suggest that in forests with a closed canopy this remote sensing technique has promise for forest inventory and productivity assessment. The findings also suggest that the software has promise for discriminating between native forest with a complete canopy and forest which has a broken canopy, such as coconut or banana plantation.
Resumo:
Two major factors are likely to impact the utilisation of remotely sensed data in the near future: (1)an increase in the number and availability of commercial and non-commercial image data sets with a range of spatial, spectral and temporal dimensions, and (2) increased access to image display and analysis software through GIS. A framework was developed to provide an objective approach to selecting remotely sensed data sets for specific environmental monitoring problems. Preliminary applications of the framework have provided successful approaches for monitoring disturbed and restored wetlands in southern California.
Resumo:
Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.
The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions
Resumo:
The dust storm of 23 October 2002 covered most of eastern Australia and carried one of the largest recorded dust loads in Australia. In the 6 months leading up to the event, severe drought conditions in eastern Australia, plus above average maximum temperatures resulted in high potential evapo-transpiration rates, producing severe soil moisture deficits and reduced vegetation cover. Although increased wind speeds associated with a fast moving cold front were the meteorological driving force, these winds speeds were lower than those for the previously documented large dust storms. The dust storm was 2400 km long, up to 400 km across and 1.5-2.5 km in height. The plume area was estimated at 840,860 km 2 and the dust load at 0900 h was 3.35-4.85 million tones (Mt). These dust load estimates are highly sensitive to assumptions, regarding visibility-dust concentration relationships, vertical dust concentration profiles and dust ceilings. The event is examined using meteorological records, remote sensing and air quality monitoring. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Coral reefs generally exist within a relatively narrow band of temperatures, light, and seawater aragonite saturation states. The growth of coral reefs is minimal or nonexistent outside this envelope. Climate change, through its effect on ocean temperature, has already had an impact on the world's coral reefs, with almost 30% of corals having disappeared since the beginning of the 1980s. Abnormally warm temperatures cause corals to bleach ( lose their brown dinoflagellate symbionts) and, if elevated for long enough, to die. Increasing atmospheric CO2 is also potentially affecting coral reefs by lowering the aragonite saturation state of seawater, making carbonate ions less available for calcification. The synergistic interaction of elevated temperature and CO2 is likely to produce major changes to coral reefs over the next few decades and centuries. Known tolerances of corals to projected changes to sea temperatures indicate that corals are unlikely to remain abundant on reefs and could be rare by the middle of this century if the atmospheric CO2 concentration doubles or triples. The combination of changes to sea temperature and carbonate ion availability could trigger large- scale changes in the biodiversity and function of coral reefs. The ramifications of these changes for the hundred of millions of coral reef - dependent people and industries living in a high- CO2 world have yet to be properly defined. The weight of evidence suggests, however, that projected changes will cause major shifts in the prospects for industries and societies that depend on having healthy coral reefs along their coastlines.
Resumo:
This book chapter represents a synthesis of the work which started in my PhD and which has been the conceptual basis for all of my research since 1993. The chapter presents a method for scientists and managers to use for selecting the type of remotely sensed data to use to meet their information needs associated with a mapping, monitoring or modelling application. The work draws on results from several of my ARC projects, CRC Rainforest and Coastal projects and theses of P.Scarth , K.Joyce and C.Roelfsema.
Resumo:
Wistari Reef. within the southern Great Barrier Reef. is a shallow coral reef platform featuring a very clearly defined leeward accretionary wedge of carbonate sediments. The total global area of shallowly submerged coral reef has been quantified as 255 000 km(2). The question then becomes: What additional area of sediment of significant thickness is associated with the measured shallow reef areas T At Wistari Reef, the leeward sedimentary wedge has an area and a thickness that are roughly equal to the Holocene sediments that have accumulated on the platform. Several important observations can be made from these data. Firstly. the area of significant neritic carbonate sedimentation ( > 1 m/ka) associated with coral reefs is near 500000 km(2). Secondly, the production rate of neritic carbonates at Wistari Reef is almost 50%, less than the accumulation rate needed to obtain the volume of Holocene reef sediments observed. This implies that both production and accumulation neritic carbonate must have been more than a factor of two higher in the early to mid Holocene. (C) 2001 Elsevier Science B.V. All rights reserved.