122 resultados para Coral reef biology


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Reef-building corals contain fluorescent pigments termed pocilloporins that function by regulating the light environment of coral and acting as a photoprotectant in excessive sunlight. These pocilloporins are related to the monomeric green fluorescent protein and the tetrameric DsRed fluorescent proteins, which have widespread use as biotechnological tools. An intensely blue-coloured pocilloporin, termed Rtms5, was expressed in Escherichia coli, purified and crystallized. Rtms5 was shown to be tetrameric, with deep blue crystals that diffract to 2.2 Angstrom resolution and belong to space group I4(1)22. The colour of this pocilloporin was observed to be sensitive to pH and a yellow (pH 3.5) and a red form (pH 4.5) of Rtms5 were also crystallized. These crystals belong to space group P4(2)22 and diffract to 2.4 Angstrom resolution or better.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent molecular analyses indicate that many reef coral species belong to hybridizing species complexes or "syngameons." Such complexes consist of numerous genetically distinct-species or lineages, which periodically split and/or fuse as they extend through time. During splitting and fusion, morphologic intermediates form and species overlap. Here we focus on processes associated with lineage fusion, specifically introgressive hybridization, and the recognition of such hybridization in the fossil record. Our approach involves comparing patterns of ecologic and morphologic overlap in genetically characterized modern species with fossil representatives of the same or closely related species. We similarly consider the long-term consequences of past hybridization on the structure of modern-day species boundaries. Our study involves the species complex Montastraea annularis s.l. and is based in the Bahamas, where, unlike other Caribbean locations, two of the three members of the complex today are not genetically distinct. We measured and collected colonies along linear transects across Pleistocene reef terraces of last interglacial age (approximately 125 Ka) on the islands of San Salvador, Andros, and Great Inagua. We performed quantitative ecologic and morphologic analyses of the fossil data, and compared patterns of overlap among species with data from modern localities where species are and are not genetically distinct. Ecologic and morphologic analyses reveal "moderate" overlap (>10%, but statistically significant differences) and sometimes "high" overlap (no statistically significant differences) among Pleistocene growth forms (= "species"). Ecologic analyses show that three species (massive, column, organ-pipe) co-occurred. Although organ-pipes had higher abundances in patch reef environments, columnar and massive species exhibited broad, completely overlapping distributions and had abundances that were not related to reef environment. For morphometric analyses, we used multivariate discriminant analysis on landmark data and linear measurements. The results show that columnar species overlap "moderately" with organ-pipe and massive species. Comparisons with genetically characterized colonies from Panama show that the Pleistocene Bahamas species have intermediate morphologies, and that the observed "moderate" overlap differs from the morphologic separation among the three modern species. In contrast, massive and columnar species from the Pleistocene of the Dominican Republic comprise distinct morphologic clusters, similar to the modern species; organ-pipe species exhibit "low" overlap (

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F-ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is concern of the effects of Produced Formation Water (PFW, an effluent of the offshore oil and gas industry) on temperate/tropical marine organisms of the North West Shelf (NWS) of Australia. Little is known of the effects of PFW on tropical marine organisms, especially keystone species. Exposing the coral Plesiastrea versipora to a range (3-50% v/v) of PFW from Harriet A oil platform resulted in a reduction in photochemical efficiency of the symbiotic dinoflagellate algae in hospite ( in the coral tissues), assessed as a decrease in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) measured using chlorophyll fluorescence techniques. Significant differences were noted at PFW concentrations >12.5% ( v/v). In corals where F-v/F-m was significantly lowered by PFW exposure, significant discolouration of the tissues occurred in a subsequent 4-day observation period. The discolouration ( coral bleaching) was caused by a loss of the symbiotic dinoflagellates from the tissues, a known sublethal stress response of corals. PFW caused a significant decrease in F-v/F-m in symbiotic dinoflagellates freshly isolated from the coral Heliofungia actiniformis at 6.25% PFW, slightly lower than the studies in hospite. Corals exposed to lower PFW concentrations (range 0.1%-10% PFW v/v) for longer periods (8 days) showed no decrease in F-v/F-m, discolouration, loss of symbiotic dinoflagellates or changes in gross photosynthesis or respiration ( measured using O-2 exchange techniques). The study demonstrates minor toxicity of PFW from Harriet A oil platform to corals and their symbiotic algae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most scleractinian coral species are widely distributed across the tropical and subtropical Indo-Pacific. However, the genetic connectivity between populations of corals separated by large distances (thousands of kilometers) is not well known. We analyzed variability in the nucleotide sequence of the internal transcribed spacer-1 (ITS-1) of the nuclear ribosomal gene unit in the ubiquitous coral Stylophora pistillata, across the western Pacific Ocean. Eight populations from Japan, Malaysia, and the northern and southern Great Barrier Reef (GBR) were studied. Phylogenetic analyses and analysis of molecular variance (AMOVA) clearly revealed that there is panmixia among these coral populations. AMOVA showed that ITS-1 sequence variability was greater within populations (78.37%) than among populations (12.06%). These patterns strongly suggest high levels of connectivity across the species' latitudinal distribution range in the western Pacific, as is seen in many marine invertebrates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral-algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (F-v/F-m, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2',7'-dichlorodihydrofluroscein diacetate (H(2)DCFDA)stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of the herbicide diuron on the early life history stages of broadcast spawning and brooding corals were examined in laboratory experiments. Fertilisation of Acropora millepora and Montipora aequituberculata oocytes were not inhibited at diuron concentrations of up to 1000 mu gl(-1). Metamorphosis of symbiont-free A. millepora larvae was only significantly inhibited at 300 mu gl(-1) diuron. Pocillopora damicornis larvae, which contain symbiotic dinoflagellates, were able to undergo metamorphosis after 24h exposure to diuron at 1000 mu gl(-1). Two-week old P. damicornis recruits on the other hand were as susceptible to diuron as adult colonies, with expulsion of symbiotic dinoflagellates (bleaching) evident at 10 mu gl(-1) diuron after 96 h exposure. Reversible metamorphosis was observed at high diuron concentrations, with fully bleached polyps escaping from their skeletons. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques demonstrated a reduction in photosynthetic efficiency (Delta F/F'(m)) in illuminated P. dami- cornis recruits after a 2h exposure to 1 mu gl(-1) diuron. The dark-adapted quantum yields (F-v/F-m also declined, indicating chronic photoinhibition and damage to photosystem H. Crown Copyright (c) 2004 Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The abundance and community composition of the endofauna in 2 species of sponge, Haliclona sp. 1 and Haliclona sp. 2 (phylum Porifera: order Haplosclerida), were examined at different sites on the slope at Heron Island Reef, in the southern Great Barrier Reef, on 2 separate occasions. Both species of Haliclona Occupy Similar habitats on the reef slope and are often found living adjacent to each other, but the major groups of secondary metabolites and the gross external morphology in the 2 species of sponge are different. The 2 species of sponge supported significantly different endofaunal communities, with Haliclona sp. 2 Supporting 3 to 4 times more individuals than Haliclona sp. 1. Fewer demersal zooplankton (copepods), nematodes and some peracarid crustaceans were found in Haliclona sp. I compared with Haliclona sp. 2. There were also differences in the numbers of spionid, nereidid and syllid. polychaetes living in the 2 species of sponge. The only taxon that was more abundant in Haliclona sp. 1 than Haliclona sp. 2 was the spionid Polydorella prolifera, and this difference was only evident on 1. of the 2 occasions. The amount of free space (pores, channels, cavities) for a given weight of sponge was only 19% greater in Haliclona sp. 2 than in Haliclona sp. 1, suggesting other factors, such as the differences in the allelochemicals, may have a role in determining the numbers and types of animals living in these 2 species of sponge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A recent preliminary survey revealed that 12 species of unstalked crinoids occur on a gentle sandy slope (12-18 m depth) at Lizard Island, Great Barrier Reef, Australia; five of which are also found on coral reefs. The other seven appear to constitute a unique assemblage restricted to unconsolidated substrates, where most cling to algae or hide beneath rubble or sponges. Members of this assemblage exhibit all of the basic feeding postures found among reef-dwelling species. However, Comatula rotalaria, which lacks anchoring cirri and bears uniquely differentiated short and long arms, exhibits a posture different from other living crinoids. Quantitative transects reveal apparent depth-related differences in species composition: C. rotalaria dominated the 12 transects in 12-13 m (84% of 82 specimens), while Comatella nigra, Comatula cf. purpurea, Amphimetra cf. tessellata and Zygometra microdiscus accounted for 96% of 54 specimens observed along 12 transects in 16-17 m.