130 resultados para Conformational-changes
Resumo:
The effects of 4 estrus synchronization treatments on intervals to and synchrony of estrus and ovulation, on timing of the preovulatory LH surge and associated changes in plasma progesterone, LH, FSH, and 17 beta-estradiol (E(2)) were investigated in 48 Bos indicus cows. Treatment 1 consisted of 2 injections of PGF(2 alpha) 14 d apart (n = 12); Treatment 2 of a subcutaneous 3-mg norgestomet implant and an intramuscular injection of 3 mg of norgestomet and 5 mg estradiol valerate, with the implant removed 10 d later (n = 12; norgestomet-estradiol); Treatment 3 of norgestomet-estradiol, with a subcutaneous injection of PMSG given at time of implant removal (Day 10; n = 12); and Treatment 4 of norgestomet implant (as for Treatments 2 and 3) inserted for 10 d, with an intramuscular injection of PGF(2 alpha) given at the time of implant removal (n = 12). The experiment was conducted in 2 replicates (24 cows/replicate, 6 cows/group). Estrus, ovulation and timing of the preovulatory surge of LH varied less in cows treated with norgestomet-estradiol and PMSG than in cows in Treatments 1 and 4 (P < 0.008). Treatment with PMSG;educed variation in ovulation times and timing of the LH surge in cows treated with norgestomet-estradiol (P < 0.02). Concentrations of E(2) were higher in cows in Treatments 2 and 3 on the final day of treatment and at about 6 h post ovulation compared with cows in Treatments 1 and 4 (P < 0.05). Different methods for synchronizing estrus did not alter sequential endocrine and behavioral changes in relation to the timing of the LH peak, and the results were consistent with current recommendations for insemination times in Bos taurus cattle. (C) 1997 by Elsevier Science Inc.
Resumo:
H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.
Resumo:
7,028 patients with suspected acute myocardial infarction and discharged alive from hospital were followed in a 10-year community-based study. The long-term prognosis was relatively good if the electrocardiograms (ECGs) were normal (5-year all-cause death rate 5%), poor with uncodable ECGs showing rhythm or conduction disturbances (37%), and intermediate with new Q wave, new ST elevation, new T wave inversion or ischemic ECG (17-21%), and with new ST depression (27%). Similar patterns were found for ischemic cardiac death and reinfarction. The long-term prognosis of patients with suspected acute myocardial infarction is relatively good if the ECGs are normal and poor if ECGs are uncodable. ST depression may be a marker for a worse long-term outcome.
Resumo:
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
Resumo:
The solution conformation of a peptide LYS(11-36), which corresponds to the beta-sheet region in T4 lysozyme, has been examined in aqueous solution, TFE, and SDS micelles by CD and H-1 NMR spectroscopy. Secondary structure predictions suggest some beta-sheet and turn character in aqueous solution but predict a helical conformation in a more hydrophobic environment. The predictions were supported by the CD and NMR studies which showed the peptide to be relatively unstructured in aqueous solution, although there was some evidence of a beta-turn conformer which was maintained in 200 mM SDS and, to a lesser extent, in 50% TFE. The peptide was significantly helical in the presence of either 50% TFE or 200 mM SDS. TFE and SDS titrations showed that the peptide could form helical, sheet, or extended structure depending on the TFE or SDS concentration. The studies indicate that peptide environment is the determining factor in secondary structure adopted by LYS(11-36).