72 resultados para Computer software maintenance
Resumo:
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.
Resumo:
All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Although information systems (IS) problem solving involves knowledge of both the IS and application domains, little attention has been paid to the role of application domain knowledge. In this study, which is set in the context of conceptual modeling, we examine the effects of both IS and application domain knowledge on different types of schema understanding tasks: syntactic and semantic comprehension tasks and schema-based problem-solving tasks. Our thesis was that while IS domain knowledge is important in solving all such tasks, the role of application domain knowledge is contingent upon the type of understanding task under investigation. We use the theory of cognitive fit to establish theoretical differences in the role of application domain knowledge among the different types of schema understanding tasks. We hypothesize that application domain knowledge does not influence the solution of syntactic and semantic comprehension tasks for which cognitive fit exists, but does influence the solution of schema-based problem-solving tasks for which cognitive fit does not exist. To assess performance on different types of conceptual schema understanding tasks, we conducted a laboratory experiment in which participants with high- and low-IS domain knowledge responded to two equivalent conceptual schemas that represented high and low levels of application knowledge (familiar and unfamiliar application domains). As expected, we found that IS domain knowledge is important in the solution of all types of conceptual schema understanding tasks in both familiar and unfamiliar applications domains, and that the effect of application domain knowledge is contingent on task type. Our findings for the EER model were similar to those for the ER model. Given the differential effects of application domain knowledge on different types of tasks, this study highlights the importance of considering more than one application domain in designing future studies on conceptual modeling.
Resumo:
The real-time refinement calculus is a formal method for the systematic derivation of real-time programs from real-time specifications in a style similar to the non-real-time refinement calculi of Back and Morgan. In this paper we extend the real-time refinement calculus with procedures and provide refinement rules for refining real-time specifications to procedure calls. A real-time specification can include constraints on, not only what outputs are produced, but also when they are produced. The derived programs can also include time constraints oil when certain points in the program must be reached; these are expressed in the form of deadline commands. Such programs are machine independent. An important consequence of the approach taken is that, not only are the specifications machine independent, but the whole refinement process is machine independent. To implement the machine independent code on a target machine one has a separate task of showing that the compiled machine code will reach all its deadlines before they expire. For real-time programs, externally observable input and output variables are essential. These differ from local variables in that their values are observable over the duration of the execution of the program. Hence procedures require input and output parameter mechanisms that are references to the actual parameters so that changes to external inputs are observable within the procedure and changes to output parameters are externally observable. In addition, we allow value and result parameters. These may be auxiliary parameters, which are used for reasoning about the correctness of real-time programs as well as in the expression of timing deadlines, but do not lead to any code being generated for them by a compiler. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.
Resumo:
Dynamic binary translation is the process of translating, modifying and rewriting executable (binary) code from one machine to another at run-time. This process of low-level re-engineering consists of a reverse engineering phase followed by a forward engineering phase. UQDBT, the University of Queensland Dynamic Binary Translator, is a machine-adaptable translator. Adaptability is provided through the specification of properties of machines and their instruction sets, allowing the support of different pairs of source and target machines. Most binary translators are closely bound to a pair of machines, making analyses and code hard to reuse. Like most virtual machines, UQDBT performs generic optimizations that apply to a variety of machines. Frequently executed code is translated to native code by the use of edge weight instrumentation, which makes UQDBT converge more quickly than systems based on instruction speculation. In this paper, we describe the architecture and run-time feedback optimizations performed by the UQDBT system, and provide results obtained in the x86 and SPARC® platforms.
Resumo:
High-level language program compilation strategies can be proven correct by modelling the process as a series of refinement steps from source code to a machine-level description. We show how this can be done for programs containing recursively-defined procedures in the well-established predicate transformer semantics for refinement. To do so the formalism is extended with an abstraction of the way stack frames are created at run time for procedure parameters and variables.