130 resultados para Computational methods
Resumo:
Taking functional programming to its extremities in search of simplicity still requires integration with other development (e.g. formal) methods. Induction is the key to deriving and verifying functional programs, but can be simplified through packaging proofs with functions, particularly folds, on data (structures). Totally Functional Programming avoids the complexities of interpretation by directly representing data (structures) as platonic combinators - the functions characteristic to the data. The link between the two simplifications is that platonic combinators are a kind of partially-applied fold, which means that platonic combinators inherit fold-theoretic properties, but with some apparent simplifications due to the platonic combinator representation. However, despite observable behaviour within functional programming that suggests that TFP is widely-applicable, significant work remains before TFP as such could be widely adopted.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
Objective: The Assessing Cost-Effectiveness - Mental Health (ACE-MH) study aims to assess from a health sector perspective, whether there are options for change that could improve the effectiveness and efficiency of Australia's current mental health services by directing available resources toward 'best practice' cost-effective services. Method: The use of standardized evaluation methods addresses the reservations expressed by many economists about the simplistic use of League Tables based on economic studies confounded by differences in methods, context and setting. The cost-effectiveness ratio for each intervention is calculated using economic and epidemiological data. This includes systematic reviews and randomised controlled trials for efficacy, the Australian Surveys of Mental Health and Wellbeing for current practice and a combination of trials and longitudinal studies for adherence. The cost-effectiveness ratios are presented as cost (A$) per disability-adjusted life year (DALY) saved with a 95% uncertainty interval based on Monte Carlo simulation modelling. An assessment of interventions on 'second filter' criteria ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') allows broader concepts of 'benefit' to be taken into account, as well as factors that might influence policy judgements in addition to cost-effectiveness ratios. Conclusions: The main limitation of the study is in the translation of the effect size from trials into a change in the DALY disability weight, which required the use of newly developed methods. While comparisons within disorders are valid, comparisons across disorders should be made with caution. A series of articles is planned to present the results.
Resumo:
Carbon monoxide, the chief killer in fires, and other species are modelled for a series of enclosure fires. The conditions emulate building fires where CO is formed in the rich, turbulent, nonpremixed flame and is transported frozen to lean mixtures by the ceiling jet which is cooled by radiation and dilution. Conditional moment closure modelling is used and computational domain minimisation criteria are developed which reduce the computational cost of this method. The predictions give good agreement for CO and other species in the lean, quenched-gas stream, holding promise that this method may provide a practical means of modelling real, three-dimensional fire situations. (c) 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.
Resumo:
Little consensus exists in the literature regarding methods for determination of the onset of electromyographic (EMG) activity. The aim of this study was to compare the relative accuracy of a range of computer-based techniques with respect to EMG onset determined visually by an experienced examiner. Twenty-seven methods were compared which varied in terms of EMG processing (low pass filtering at 10, 50 and 500 Hz), threshold value (1, 2 and 3 SD beyond mean of baseline activity) and the number of samples for which the mean must exceed the defined threshold (20, 50 and 100 ms). Three hundred randomly selected trials of a postural task were evaluated using each technique. The visual determination of EMG onset was found to be highly repeatable between days. Linear regression equations were calculated for the values selected by each computer method which indicated that the onset values selected by the majority of the parameter combinations deviated significantly from the visually derived onset values. Several methods accurately selected the time of onset of EMG activity and are recommended for future use. Copyright (C) 1996 Elsevier Science Ireland Ltd.
Resumo:
The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. In this paper we study a refinement calculus for deriving logic programs. Dealing with logic programs rather than imperative programs has the dual advantages that, due to the expressive power of logic programs, the final program is closer to the original specification, and each refinement step can achieve more. Together these reduce the overall number of derivation steps. We present a logic programming language extended with specification constructs (including general predicates, assertions, and types and invariants) to form a wide-spectrum language. General predicates allow non-executable properties to be included in specifications. Assertions, types and invariants make assumptions about the intended inputs of a procedure explicit, and can be used during refinement to optimize the constructed logic program. We provide a semantics for the extended logic programming language and derive a set of refinement laws. Finally we apply these to an example derivation.
Resumo:
This study investigated the effect of two anti-pronation taping techniques on vertical navicular height, an indicator of foot pronation, after its application and 20 min of exercise. The taping techniques were: the low dye (LD) and low dye with the addition of calcaneal slings and reverse sixes (LDCR). A repeated measures study was used. It found that LDCR was superior to LD and control immediately after application and exercise. LD was better than control immediately after application but not after exercise. These findings provide practical directions to clinicians regularly using anti-pronation taping techniques.