93 resultados para Cobalt(II) complexes
Resumo:
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co-II species to its parent Co-III complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co-II complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Resumo:
The Co-III complexes of the hexadentate tripodal ligands HOsen (3-(2'-aminoethylamino)-2,2-bis((2 ''-aminoethylamino) methyl) propan-1-ol) and HOten (3-(2'-aminoethylthia)-2,2-bis((2 ''-aminoethylthia) methyl) propan-1-ol) have been synthesized and fully characterized. The crystal structures of [Co(HOsen)]Cl-3 center dot H2O and [Co(HOten)](ClO4)Cl-2 are reported and in both cases the ligands coordinate as tripodal hexadentate N-6 and N3S3 donors, respectively. Cyclic voltammetry of the N3S3 coordinated complex [Co(HOten)](3+) is complicated and electrode dependent. On a Pt working electrode an irreversible Co-III/II couple ( formal potential - 157 mV versus Ag-AgCl) is seen, which is indicative of dissociation of the divalent complex formed at the electrode. The free HOten released by the dissociation of [Co(HOten)](2+) can be recaptured by Hg as shown by cyclic voltammetry experiments on a static Hg drop electrode ( or in the presence of Hg2+ ions), which leads to the formation of an electroactive Hg-II complex of the N3S3 ligand (formal potential + 60 mV versus Ag-AgCl). This behaviour is in contrast to the facile and totally reversible voltammetry of the hexaamine complex [Co(HOsen)](3+) ( formal potential (Co-III/II) - 519 mV versus Ag-AgCl), which is uncomplicated by any coupled chemical reactions. Akinetic and thermodynamic analysis of the [Co(HOten)](2+)/[Hg(HOten)](2+) system is presented on the basis of digital simulation of the experimental voltammetric data.
Resumo:
The 4-carboxyphenyl-appended macrocyclic ligand trans-6,13-dimethyl-6-((4-carboxybenzyl)amino)-1,4,8,11-tetraazacyclotetradecane-6-amine (HL10) has been synthesised and complexed with Co-III. The mononuclear complexes [Co(HL10)(CN)](2+) and [CoL10(OH)](+) have been prepared and the crystal structures of their perchlorate salts are presented, where the ligand is bound in a pentadentate mode in each case while the 4-carboxybenzyl-substituted pendent amine remains free from the metal. The cyano-bridged dinuclear complex [CoL10-mu-NC-Fe(CN)(5)](2-) was also prepared and chemisorbed on titania-coated ITO conducting glass. The adsorbed complex is electrochemically active and cyclic voltammetry of the modified ITO working electrode in both water and MeCN solution was undertaken with simultaneous optical spectroscopy. This experiment demonstrates that reversible electrochemical oxidation of the Fe-II centre is coupled with rapid changes in the optical absorbance of the film.
Resumo:
A study of spin-orbit mixing and nephelauxetic effects in the electronic spectra of nickel(II)-encapsulating complexes involving mixed nitrogen and sulfur donors is reported. As the number of sulfur donors is systematically varied through the series [Ni(N6-xSx)](2+) (x = 0-6), the spin-forbidden (3)A(2)g --> E-1(g) and (3)A(2g) --> (1)A(1g) transitions undergo a considerable reduction in energy whereas the spin-allowed transitions are relatively unchanged. The [Ni(diAMN(6)sar)](2+) and [Ni(AMN(5)Ssar)](2+) complexes exhibit an unusual band shape for the (3)A(2g) --> T-3(2g) transition which is shown to arise from spin-orbit mixing of the E spin-orbit levels associated with the E-1(g) and T-3(2g) states. A significant differential nephelauxetic effect also arises from the covalency differences between the t(2g) and e(g) orbitals with the result that no single set of Racah B and C interelectron repulsion parameters adequately fit the observed spectra. Using a differential covalency ligand-field model, the spectral transitions are successfully reproduced with three independent variables corresponding to 10Dq and the covalency parameters f(t) and f(e), associated with the t(2g) and e(g) orbitals, respectively. The small decrease in f(t) from unity is largely attributed to central-field covalency effects whereas the dramatic reduction in f(e) with increasing number of sulfur donors is a direct consequence of the increased metal-ligand covalency associated with the sulfur donors. Covalency differences between the t(2g) and e(g) orbitals also result in larger 10Dq values than those obtained simply from the energy of the (3)A(2g) --> T-3(2g) spin-allowed transition.
Resumo:
Molybdenum hexacarbonyl reacted with the pendant-arm macrocycles 10-methyl-1,4,8, 12-tetraazacyclopentadecane-10-amine (L-1) and trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6, 13-diamine (L-2) in the absence of air to form complexes fac-[MoL1(CO)(3)] and [Mo2L2(CO)(8)] respectively. The mononuclear complex has the macrocycle bound in a tridentate manner, including the pendant primary amine, whereas the dinuclear complex exhibits a bridging bis(didentate) co-ordination mode, again involving the pendant primary amines. Structures have been defined by crystal structure analyses. The preferential binding of the pendant primary amines rather than additional secondary amines parallels similar behaviour observed earlier with some mercury(II) and rhodium(III) complexes, and points to the important general role of this pendant, despite being fused directly to the macrocyclic ring, in metal-ion binding.
Resumo:
A palladium(II)-catalyzed hydroxycyclization-carbonylation-lactonization sequence with appropriate pent-4-ene-1,3-diols provides efficient access to the bicyclic gamma -lactones, 5-n-butyl- and 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-ones (3) and (4), respectively, in both racemic and enantiomeric forms. Some of the substrate pent-4-ene-1,3-diols of high enantiomeric excess (ee) have been derived from racemic terminal epoxides by hydrolytic kinetic resolution (HKR) using cobalt (III)-salen complexes. (9Z,12R)-(+)-Ricinoleic acid also serves as a chiral pool source of other pent-4-ene-1,3-diols. These syntheses and enantioselective gas chromatography confirm the structures and absolute stereochemistry of the lactones in some species of parasitic wasps (Hymenoptera: Braconidae). The highly abundant 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-one (4) in Diachasmimorpha kraussii and D. longicaudata is of high ee (> 99%) with (3aR,5R,6aR) stereochemistry.
Resumo:
The three-dimensional branched nature of dendritic macromolecules provides many potential sites per molecule for the complexation of metal ions. Therefore, dendrimers may act as hosts for metals with coordination potentially occurring at the periphery, the interior, or both. To understand further the complexation of dendrimers with metal ions EXAFS experiments were carried out. In this work, the interaction of amine-terminated polyamido(amine), PAMAM, dendrimer with copper(II) ions determined by EXAFS is reported. It was found that a model consisting of the copper(II) ion forming five- and six-membered rings by chelating with the primary amine, amide, and tertiary amine nitrogen donors of the PAMAM dendrimer could describe the experimental EXAFS data well. Corroborative evidence for binding to amide nitrogen donors comes from the broadening of NMR resonances of a copper(Il)-PAMAM mixture revealing the presence of paramagnetic copper(II) ions at these sites. The significance of the results presented in this paper is that copper(II) ions form complexes within the dendrimer structure and not just at the periphery. The current study may have implications for the use of PAMAM dendrimers as effective ligands in sensing systems.
Resumo:
Copper(II) bromide and chloride complexes of the new heptadentate ligand 2,6-bis(bis(2-pyridylmethyl)amino)methylpyridine (L) have been prepared. For the bromide complexes, chains of novel, approximately C-2-symmetric, chiral [Cu-2(L)Br-2](2+) 'wedge-shaped' tectons are found. The links between the dicopper tectons and the overall chirality and packing of the chains are dictated by the bromide ion content, not the counter anion. In contrast, the chloride complexes exhibit linked asymmetric [Cu-2(L)Cl-3](+) tectons with distinct N3CuCl2 and N4CuCl2 centres in the solid. The overall structures of the dicopper bromide and chloride units persist in solution irrespective of the halide. The redox chemistry of the various species is also described.
Resumo:
A selection of nine macrocyclic Fe-III/II and Co-III/II transition metal complexes has been chosen to serve as a universal set of mediator-titrants in redox potentiometry of protein samples. The potential range spanned by these mediators is approximately from +300 to -700 mV vs the normal hydrogen electrode, which covers the range of most protein redox potentials accessible in aqueous solution. The complexes employed exhibit stability in both their oxidized and their reduced forms as well as pH-independent redox potentials within the range 6 < pH < 9. The mediators were also chosen on the basis of their very weak visible absorption maxima in both oxidation states, which will enable (for the first time) optical redox potentiometric titrations of proteins with relatively low extinction coefficients. This has previously been impractical with organic mediators, such as indoles, viologens and quinones, whose optical spectra interfere strongly with those of the protein.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
Mixed valence complexes containing ferro- and ferricyanide have been known for almost 300 years, but no dinuclear, non-polymeric examples of these complexes have been structurally characterized. Here we report the first such example, comprising ferrocyanide coordinated to a pentaaminecobalt(III) complex. This Fe-II-Co-III complex may be reversibly oxidized to the Fe-III-Co-III analogue.
Resumo:
The interactions between zinc salts and the naturally occurring cyclic octapeptide ascidiacyclamide in methanol, as well as a synthetic analogue cyclo[Ile(Oxn)-D-Val(Thz)](2), were monitored by H-1 NMR and CD spectroscopy. Three zinc complexes were identified, their relative amounts depending on the nature of the anion (perchlorate, triflate or chloride) and the presence or absence of base. Binding constants for two of the zinc species were calculated from CD or H-1 NMR spectra, [Zn(L - H)](+) (KZn(L-H) = [Zn(L - H)(+)]/[Zn2+][(L - H)(-)] = 10(7 +/- 2) M-1; 95% methanol/5% water, 298.0 K, NEt3/HClO4 buffer 0.04 M) and [ZnLCl](+) (K-ZnCIL = [ZnCIL+]/[Zn2+][Cl-][L] = 10(7.2) (+/-) (0.1) M-2; d(3)-methanol, 301 K).
Resumo:
Reaction of K-3[Cr(ox)(3)] (ox = oxalate) with nickel(II) and tris(2-aminoethyl)amine (tren) in aqueous solution resulted in isolation of the bimetallic assembly [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O. The polymeric complex {[Ni-2(tren)(3)][ClO4](4). H2O}(n) has been prepared by reaction of nickel(II) perchlorate and tren in aqueous solution. From the same reaction mixture the complex [Ni-2(tren)(2)(aepd)][ClO4](4). 2H(2)O (aepd = N-(2-aminoethyl)pyrrolidine-3,4-diamine), in which a bridging tren ligand contains a carbon-carbon bond between two arms forming a substituted pyrrolidine, has been isolated. The complexes have been characterized by X-ray crystallography. The magnetic susceptibility (300-4.2 K) and magnetization data (2, 4 K, H = 0-5 T) for {[Ni-2(tren)(3)][ClO4](4). H2O}(n) (300 K , 4.23 mu(B)) exhibit evidence of weak antiferromagnetic coupling and zero field splitting (2J = -1.8 cm(-1); \ D\ = 2 cm(-1)) at low temperature. For [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O the susceptibility data at 300 K are indicative of uncoupled nickel(II) and chromium(III) sites with zero-field splitting and intramolecular antiferromagnetic coupling predicted at low temperature.