89 resultados para CONVENTIONAL MICE
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Resumo:
Background: Susceptibility to periodontal infections may, in part, be genetically determined. Porphyromonas gingivalis is a major periodontopathogen, and the immune response to this organism requires T-cell help. The aim of the present study was to examine the specific T-cell cytokine responses to P gingivalis outer membrane antigens in a mouse model and their relationship with H-2 haplotype. Methods: BALB/c and DBA/2J (H-2(d)), CBACaH (H-2(k)), and C57BL6 (H-2(b)) mice were immunized with P gingivalis outer membrane antigens weekly for 3 weeks. One week after the final injection, the spleens were removed, and 6 T-cell lines specific for P gingivalis were established for each mouse strain. The percentage of CD4 and CD8 cells in the P gingivalis-specific T-cell lines staining positive for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma, and IL-10 was determined by 2-color flow cytometry. Results: The cytokine profiles of T-cell lines from BALB/c and DBA/2J mice showed no significant differences. Significantly fewer IL4+, IFN-gamma+, and IL-10+ CD4 cells than IL-4+, IFN-gamma+, and IL-10+ CD8 cells, respectively, were demonstrated for both strains. P gingivalis-specific T-cell lines generated from CBACaH mice were similar to those generated from BALB/c and DBA/2J mice; however, the mean percentage of IL4+ CD4 cells in CBACaH mice was lower than the percentage of IFN-gamma+ CD4 cells. Also, the mean percentage of IFN-gamma+ CD4 cells in CBACaH mice was significantly increased compared to DBA/2J mice. Unlike the other 3 strains, T-cell lines established from C57BL6 mice contained similar percentages of cytokine-positive cells, although the percentage of IL-4+ CD4 cells was reduced in comparison to the percentage of CD8 cells. However, comparisons with the other 3 strains demonstrated a higher percentage of IL-4+ CD4 cells than in lines established from the spleens of DBA/2J mice, IFN-gamma+ CD4 cells than in lines established from BALB/c and CBACaH mice, and IL-10+ CD4 cells than in lines established from all 3 other strains. No significant differences in the percentage of positive CD8 cells were demonstrated between lines in the 4 strains of mice. Conclusion: The specific T-cell response to P gingivalis in mice may, in the case of the CD4 response, depend on MHC genes. These findings are consistent with the concept that patient susceptibility is important to the outcome of periodontal infection and may, in part, be genetically determined.
Resumo:
Keratinocytes expressing the human papillomavirus (HPV) type 16 E7 protein, as a transgene driven by the K14 promoter, form a murine model of HPV-mediated epithelial cancers in humans. Our previous studies have shown that K14E7 transgenic skin grafts onto syngeneic mice are not susceptible to immune destruction despite the demonstrated presence of a strong, systemic CTL response directed against the E7 protein. Consistent with this finding, we now show that cultured, E7 transgenic keratinocytes (KC) express comparable endogenous levels of E7 protein to a range of CTL-sensitive E7-expressing cell lines but are not susceptible to CTL-mediated lysis in vitro . E7 transgenic and non-transgenic KC are susceptible to conventional mechanisms of CTL-mediated lysis, including perforin and Fas/FasL interaction when an excess of exogenous peptide is provided. The concentration of exogenous peptide required to render a cell susceptible to lysis was similar between KC and other conventional CTL targets (e.g. EL-4), despite large differences in H-2D(b) expression at the cell surface. Furthermore, exposure of KC to IFN-gamma increased H-2D(b) expression, but did not substantially alter the exogenous peptide concentration required to sensitize cells for half maximal lysis. In contrast, the lytic sensitivity of transgenic KC expressing endogenous E7 is modestly improved by exposure to IFN-gamma. Thus, failure of CTL to eliminate KC expressing endogenous E7, and by inference squamous tumours expressing E7, may reflect the need for a sustained, local inflammatory environment during the immune effector phase.
Resumo:
Background: It has previously been suggested that CD4(+) T cells play a pivotal role in regulating the immune response to periodontal pathogens. The aim of the present study therefore was to determine delayed type hypersensitivity (DTH), spleen cell proliferation, serum and splenic anti-Porphyromonas gingivalis antibody levels, and lesion sizes following challenge with viable P. gingiualis in CD4-depleted BALB/c mice immunized with P. gingiualis outer membrane proteins (OMP). Methods: Four groups of BALB/c mice were used. Groups 1 and 2 were injected intraperitoneally (ip) with saline for 3 consecutive days and then weekly throughout the experiment. Groups 3 and 4 were injected ip with rat immunoglobulin and a monoclonal rat anti-mouse CD4 antibody, respectively. Two days later, group 1 mice were injected ip with saline only, while all the other groups were immunized ip with P. gingiualis OMP weekly for 3 weeks. One week later following the last immunization of OMP, 3 separate experiments were conducted to determine: 1) the DTH response to P. gingiualis OMP by measuring footpad swelling; 2) the levels of antibodies to P. gingiualis in serum samples and spleen cell cultures using an enzyme-linked immunosorbent assay, as well as spleen cell proliferation after stimulation with OMP; and 3) the lesion sizes after a subcutaneous challenge with viable P. gingiualis cells. Results: In CD4(+) T-cell-depleted mice (group 4), the DTH response and antigen-stimulated cell proliferation were significantly suppressed when compared to groups 2 and 3. Similarly, the levels of serum and splenic IgM, IgG, and all IgG subclass antibodies to P. gingiualis OMP were depressed. Delayed healing of P. gingivalis-induced lesions was also observed in the CD4(+) T-cell-depleted group. Conclusions: This study has shown that depletion of CD4(+) T cells prior to immunization with P. gingiualis OMP led to the suppression of both the humoral and cell-mediated immune response to this microorganism and that this was associated with delayed healing. These results suggest that the induction of the immune response to P. gingiualis is a CD4(+) T-cell-dependent mechanism and that CD4(+) T cells are important in the healing process.
Resumo:
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.
Resumo:
Binding of cell surface carbohydrates to their receptors specifically promotes axon growth and synaptogenesis in select regions of the developing nervous system. In some cases these interactions depend upon cell-cell adhesion mediated by the same glycoconjugates present on the surface of apposing cells or their processes. We have previously shown that the plant lectin Dolichos biflorus agglutinin (DBA) binds to: a subpopulation of mouse primary olfactory neurons whose axons selectively fasciculate prior to terminating in the olfactory bulb. In the present study, we investigated whether these glycoconjugates were also expressed by postsynaptic olfactory neurons specifically within the olfactory pathway. We show here for the first time that DBA ligands were expressed both by a subset of primary olfactory neurons as well as by the postsynaptic mitral/tufted cells in BALB/C mice. These glycoconjugates were first detected on mitral/tufted cell axons during the early postnatal period, at a time when there is considerable synaptogenesis and synaptic remodelling in the primary olfactory cortex. This is one of the few examples of the selective expression of molecules in contiguous axon tracts in the mammalian nervous system. These results suggest that glycoconjugates recognized by DBA may have a specific role in the formation and maintenance of neural connections within a select functional pathway in the brain. J. Comp. Neurol. 443:213-225, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant.
Resumo:
The study reported here investigated the immunogenicity and protective potential of a lipid core peptide (LCP) construct containing a conserved region determinant of M protein, defined as peptide J8. Parenteral immunization of mice with LCP-J8 led to the induction of high-titer serum immunoglobulin G J18-specific antibodies when the construct was coadministered with complete Freund's adjuvant (CFA) or administered alone. LCP-J8 in CFA had significantly enhanced immunogenicity compared with the monomeric peptide J8 given in CFA. Moreover, LCP-J8/CFA and LCP-J8 antisera opsonized four different group A streptococcal (GAS) strains, and the antisera did not cross-react with human heart tissue proteins. These data indicate the potential of an LCP-based M protein conserved region GAS vaccine in the induction of broadly protective immune responses in the absence of a conventional adjuvant.
Resumo:
Background-In vivo methods to evaluate the size and composition of atherosclerotic lesions in animal models of atherosclerosis would assist in the testing of antiatherosclerotic drugs. We have developed an MRI method of detecting atherosclerotic plaque in the major vessels at the base of the heart in low-density lipoprotein (LDL) receptor-knockout (LDLR-/-) mice on a high-fat diet. Methods and Results-Three-dimensional fast spin-echo magnetic resonance images were acquired at 7 T by use of cardiac and respiratory triggering, with approximate to140-mum isotropic resolution, over 30 minutes. Comparison of normal and fat-suppressed images from female LDLR-/- mice I week before and 8 and 12 weeks after the transfer to a high-fat diet allowed visualization and quantification of plaque development in the innominate artery in vivo. Plaque mean cross-sectional area was significantly greater at week 12 in the LDLR-/- mice (0.14+/-0.086 mm(2) [mean+/-SD]) than in wild-type control mice on a normal diet (0.017+/-0.031 mm(2), p
Resumo:
Infection with group A streptococci (GAS) can lead to rheumatic fever (RF) and rheumatic heart disease (RHD) which are a major health concern particularly in indigenous populations worldwide, and especially in Australian Aboriginals. A primary route of GAS infection is via the upper respiratory tract, and therefore, a major goal of research is the development of a mucosal-based GAS vaccine, The majority of the research to date has focused on the GAS M protein since immunity to GAS is mediated by M protein type-specific opsonic antibodies. There are two major impediments to the development of a vaccine-the variability in M proteins and the potential for the induction of an autoimmune response. To develop a safe and broad-based vaccine, we have therefore focused on the GAS M protein conserved C-region, and have identified peptides, J8 and the closely related J8 peptide (J14), which may be important in protective immunity to GAS infection. Using a mucosal animal model system, our data have shown a high degree of throat GAS colonisation in B10.BR mice 24 h following intranasal immunisation with the mucosal adjuvant, cholera toxin B subunit (CTB), and/or diptheria toxoid (dT) carrier, or PBS alone, and challenge with the M1 GAS strain. However, GAS colonisation of the throat was significantly reduced following intranasal immunisation of mice with the vaccine candidate J8 conjugated to dT or J14-dT when administered with CTB. Moreover, J8-dT/CTB and J14-dT/CTB-immunised mice had a significantly higher survival when compared to CTB and PBS-immunised control mice. These data indicate that immunity to GAS infection can be evoked by intranasal immunisation with a GAS M protein C-region peptide vaccine that contains a protective B cell epitope and lacks a T cell autoepitope. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Primary vaccine strategies against group A streptococci (GAS) have focused on the M protein-the target of opsonic antibodies important for protective immunity. We have previously reported protection of mice against GAS infection following parenteral delivery of a multi-epitope vaccine construct, referred to as a heteropolymer. This current report has assessed mucosal (intranasal (i.n.) and oral) delivery of the heteropolymer in mice with regard to the induction and specificity of mucosal and systemic antibody responses, and compared this to parenteral delivery. GAS-specific IgA responses were detected in saliva and gut upon i.n. and oral delivery of the heteropolymer co-administered with cholera toxin B subunit, respectively. High titre serum IgG responses were elicited to the heteropolymer following all routes of delivery when administered with adjuvant. Moreover, as with parenteral delivery, serum IgG antibodies were detected to the individual heteropolymer peptides following i.n. but not oral delivery. These data support the potential of the i.n. route in the mucosal delivery of a GAS vaccine. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Immunity induced by the 19-kDa fragment of Plasmodium yoelii merozoite surface protein 1 (MSP1(19)) is dependent on high titers of specific antibodies present at the time of challenge and a continuing active immune response postinfection. However, the specificity of the active immune response postinfection has not been defined. In particular, it is not known whether anti-MSP1(19) antibodies that arise following infection alone are sufficient for protection. We developed systems to investigate whether an MSP1(19)-specific antibody response alone both prechallenge and postchallenge is sufficient for protection. We were able to exclude antibodies with other specificities, as well as any contribution of MSP1(19)-specific CD4(+) T cells acting independent of antibody, and we concluded that an immune response focused solely on MSP1(19)-specific antibodies is sufficient for protection. The data imply that the ability of natural infection to boost an MSPI,g-specific antibody response should greatly improve vaccine efficacy.