116 resultados para Bone technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that growth hormone (GH) up-regulates the expression of enzymes, matrix proteins, and differentiation markers involved in mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with GH over 5 days, The molar teeth and associated alveolar bone were processed for immunohistochemical demonstration of bone morphogenetic proteins 2 and 4 (BMP-2 and -4), bone morphogenetic protein type IA receptor (BMPR-IA), bone alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), bone sialoprotein (BSP), and E11 protein (E11), The cementoblasts, osteoblasts, and periodontal ligament (PDL) cells responded to GH by expressing BMP-2 and -4, BMPR-IA, ALP, OC, and OPN and increasing the numbers of these cells. No changes were found in patterns of expression of the late differentiation markers BSP and E11 in response to GH, Thus, GH evokes expression of bone markers of early differentiation in cementoblasts, PDL cells, and osteoblasts of the periodontium. We propose that the induction of BMP-2 and -4 and their receptor by GH compliments the role of GH-induced insulin-like growth factor 1 (IGF-1) in promoting bone and tooth root formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examined the barriers faced by people with Spinal Cord Injuries (SCI) when integrating their Assistive Technology (AT) into the workplace, as well as factors that contribute to successful integration. In-depth interviews were taken with 5 men (aged 37-50 yrs) with SCI, 3 of their employers and 2 co-workers. Results indicate that in addition to the barriers previously outlined in the literature related to funding the technology, time delays, information availability, training and maintenance, other issues were highlighted. Implications for service providers are considered in relation to these barriers and the factors that prompted successful integration. The author discusses limitations of the study and makes recommendations for future research. (PsycINFO Database Record (c) 2007 APA, all rights reserved)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, I show how new spaces are being prefigured for colonization in new economy policy discourses. Drawing on a corpus of 1.3 million words collected from legislatures throughout the world, I show the role of policy language in creating the foundations of an emergent form of political economy: The analysis is informed by principles from critical discourse analysis (CDA), classical political economy and critical media studies. It foregrounds a functional aspect of language called process metaphor to show how aspects of human activity are prefigured for mass commodification by the manipulation of realis and irrealis spaces. I also show how the fundamental element of any new political economy, the property element, is being largely ignored. Current moves to create a privately owned global space, which is as concrete as landed property - namely, the electromagnetic spectrum - has significant ramifications for the future of social relations in any global knowledge economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently demonstrated that suppressed bone remodeling allows microdamage to accumulate and causes reductions in some mechanical properties. However, in our previous study, I year treatment with high-dose etidronate (EHDP) did not increase microdamage accumulation in most skeletal sites of dogs in spite of complete remodeling suppression and the occurrence of spontaneous fractures of ribs and/or thoracic spinous processes. This study evaluates the effects of EHDP on microdamage accumulation and biomechanical properties before fractures occur. Thirty-six female beagles, 1-2 years old, were treated daily for 7 months with subcutaneous injections of saline vehicle (CNT) or EHDP at 0.5 (E-low) or 5 mg/kg per day (E-high). After killing, bone mineral measurement, histomorphometry, microdamage analysis, and biomechanical testing were performed. EHDP treatment suppressed intracortical and trabecular remodeling by 60%-75% at the lower dose, and by 100% at the higher dose. Osteoid accumulation caused by a mineralization deficit occurred only in the E-high group, and this led to a reduction of mineralized bone mass. Microdamage accumulation increased significantly by two- to fivefold in the rib, lumbar vertebra, ilium, and thoracic spinous process in E-low, and by twofold in the lumbar vertebra and ilium in E-high. However, no significant increase in damage accumulation was observed in ribs or thoracic spinous processes in E-high where fractures occur following 12 months of treatment. Mechanical properties of lumbar vertebrae and thoracic spinous processes were reduced significantly in both E-low and E-high. These findings suggest that suppression of bone remodeling by EHDP allows microdamage accumulation, but that osteoid accumulation reduces production of microdamage. (Bone 29:271-278; 2001) (C) 2001 by Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

skeletal disease. Bone remodeling is initiated by osteoclastic resorption followed by osteoblastic formation of new bone. Receptor activator of nuclear factor KB ligand (RANKL) is a newly described regulator of osteoclast formation and function, the activity of which appears to be a balance between interaction with its receptor RANK and with an antagonist binding protein osteoprotegerin (OPG). Therefore, we have examined the relationship between the expression of RANKL, RANK, and OPG and indices of bone structure and turnover in human cancellous bone from the proximal femur. Bone samples were obtained from individuals with osteoarthritis (OA) at joint replacement surgery and from autopsy controls. Histomorphometric analysis of these samples showed that eroded surface (ES/BS) and osteoid surface (OS/BS) were positively associated in both control (p < 0.001) and OA (p < 0.02), indicating that the processes of bone resorption and bone formation remain coupled in OA, as they are in controls. RANKL, OPG, and RANK messenger RNA, (mRNA) were abundant in human cancellous bone, with significant differences between control and OA individuals. In coplotting the molecular and histomorphometric data, strong associations were found between the ratio of RANKL/OPG mRNA and the indices of bone turnover (RANKL/OPG vs. ES/BS: r = 0.93, p < 0.001; RANKL/OPG vs. OS/BS: r = 0.80, p < 0.001). These relationships were not evident in trabecular bone from severe OA, suggesting that bone turnover may be regulated differently in this disease. We propose that the effective concentration of RANKL is related causally to bone turnover.