95 resultados para Bit Error Rate
Resumo:
Persoonia virgata R. Br. is harvested from the wild in both its vegetative and flowering stages. There has been no systematic study published on the annual growth cycle and anecdotal reports are conflicting. The growth pattern, flowering and fruit development of P. virgata in its natural habitat was recorded monthly for two consecutive years. The main growth period occurred in late spring-mid-autumn (November-May) when the shrubs were producing little or no fruit. Very few open flowers were observed at the site over the 2 years, with only 6.7 and 12.7% of stems bearing open flowers in January and February 1996, respectively. A second study of flowering on container-grown shrubs showed that individual flowers were open for only 2-5 days, with individual stems taking 3-8.5 weeks to complete flowering. The main fruit growth period occurred from May to September, and in June and July 1996 the total fruit set per stem was 41.6 and 36.1%, respectively. The fruit took at least 6 months to develop during which vegetative growth was minimal. The harvesting of plants in the flowering or fruiting stages removes the annual seed crop, which may reduce regeneration of this obligate seed regenerator and threaten its survival after fire.
Resumo:
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC > 70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be greater than or equal to1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.
Resumo:
Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: - 0.64 to - 0.28MJ/day (28%) for the former equation and - 0.39 to +0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.
Resumo:
Life history has been implicated as a determinant of variation in rate of molecular evolution amongst vertebrate species because of a negative correlation between bode size and substitution rate for many Molecular data sets. Both the generality and the cause of the negative bode size trend have been debated, and the validity of key studies has been questioned (particularly concerning the failure to account for phylogenetic bias). In this study, a comparative method has been used to test for an association between a range of life-history variables-such as body size age at maturity, and clutch size-and DNA substitution rate for three genes (NADH4, cytochrome b, and c-mos). A negative relationship between body size and rate of molecular evolution was found for phylogenetically independent pairs of reptile species spanning turtles. lizards. snakes, crocodile, and tuatara. Although this Study was limited by the number of comparisons for which both sequence and lite-history data were available, the results, suggest that a negative bode size trend in rate of molecular evloution may be a general feature of reptile molecular evolution. consistent with similar studies of mammals and birds. This observation has important implications for uncovering the mechanisms of molecular evolution and warns against assuming that related lineages will share the same substitution rate (a local molecular clock) in order to date evolutionary divergences from DNA sequences.
Resumo:
Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.
Resumo:
This study tested the hypotheses that skeletal muscle mitochondrial ATP production rate (MAPR) is impaired in patients with peripheral arterial disease (PAD) and that it relates positively to their walking performances. Seven untrained patients, eight exercise-trained patients and 11 healthy controls completed a maximal walking test and had muscle sampled from the gastrocnemius medialis muscle. Muscle was analysed for its MAPR in the presence of pyruvate, palmitoyl-L-carnitine or both, as well as citrate synthase (CS) activity. MAPRs were not different between untrained PAD and controls. In contrast, MAPRs (pyruvate) were significantly higher in trained PAD vs. controls. MAPR (pyruvate combinations) was also significantly higher in trained than untrained PAD muscle. MAPR and CS activity were highly correlated with walking performance in patients, but not in controls. These data do not support the hypothesis that isolated mitochondria are functionally impaired in PAD and demonstrate that the muscle mitochondrial capacity to oxidize carbohydrate is positively related to walking performance in these patients.
Resumo:
This study reexamined the association between speech rate and memory span in children from kindergarten to sixth grade (N = 152) in order to potentially account for the inconsistencies within the published literature on this topic. Some of the inconsistencies in past research may reflect the different methods adopted in assessing speech rate. In particular, repeating word triples may itself involve memory demands, contaminating the correlation between speech rate and memory span in younger children. Analyses using composite speech rate and memory span measures showed that speech rate for word triples shared variance with memory span that was independent of speech rate for single words. Moreover, speech rate for word triples was largely redundant with age in explaining additional variation in memory span once the effects of speech rate for single words were controlled. (C) 2002 Elsevier Science.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.