109 resultados para Application distribuée


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vacancy solution theory of adsorption is re-formulated here through the mass-action law, and placed in a convenient framework permitting the development of thermodynamic ally consistent isotherms. It is shown that both the multisite Langmuir model and the classical vacancy solution theory expression are special cases of the more general approach when the Flory-Huggins activity coefficient model is used, with the former being the thermodynamically consistent result. The improved vacancy solution theory approach is further extended here to heterogeneous adsorbents by considering the pore-width dependent potential along with a pore size distribution. However, application of the model to numerous hydrocarbons as well as other adsorptives on microporous activated carbons shows that the multisite model has difficulty in the presence of a pore size distribution, because pores of different sizes can have different numbers of adsorbed layers and therefore different site occupancies. On the other hand, use of the classical vacancy solution theory expression for the local isotherm leads to good simultaneous fit of the data, while yielding a site diameter of about 0.257 nm, consistent with that expected for the potential well in aromatic rings on carbon pore surfaces. It is argued that the classical approach is successful because the Flory-Huggins term effectively represents adsorbate interactions in disguise. When used together with the ideal adsorbed solution theory the heterogeneous vacancy solution theory successfully predicts binary adsorption equilibria, and is found to perform better than the multisite Langmuir as well as the heterogeneous Langmuir model. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from field studies carried out during the 1993-1998 Australian cotton (Gossypium hirsutum L.) seasons to monitor off-target droplet movement of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) insecticide applied to a commercial cotton crop. Averaged over a wide range of conditions, off-target deposition 500 m downwind of the field boundary was approximately 2% of the field-applied rate with oil-based applications and 1% with water-based applications. Mean airborne drift values recorded 100 m downwind of a single flight line were a third as much with water-based application compared with oil-based application. Calculations using a Gaussian diffusion model and the U.S. Spray Drift Task Force AgDRIFT model produced downwind drift profiles that compared favorably with experimental data. Both models and data indicate that by adopting large droplet placement (LDP) application methods and incorporating crop buffer distances, spray drift can be effectively managed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.