79 resultados para Angiotensin-Converting Enzyme Inhibitors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structures of human phenylethanolamine N-methyltransferase in complex with S-adenosyl-L-homocysteine (7, AdoHcy) and either 7-iodo-1,2,3,4-tetrahydroisoquinoline (2) or 8,9-dichloro-2,3,4,5-tetrahydro-1H-2-benzazepine (3, LY134046) were determined and compared with the structure of the enzyme complex with 7 and 7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (1, SK&F 29661). The enzyme is able to accommodate a variety of chemically disparate functional groups on the aromatic ring of the inhibitors through adaptation of the binding pocket for this substituent and by subtle adjustments of the orientation of the inhibitors within the relatively planar binding site. In addition, the interactions formed by the amine nitrogen of all three inhibitors reinforce the hypothesis that this functional group mimics the beta-hydroxyl of norepinephrine rather than the amine. These studies provide further clues for the development of improved inhibitors for use as pharmacological probes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drugs known to inhibit the metabolism of cyclosporine are administered concomitantly to those who undergo cardiothoracic transplantation. The aim of this study was to examine in quantitative terms the relationship between cyclosporine oral dose rate and the trough concentration (Css(trough)) at steady state in patients who undergo cardiothoracic transplantation and are administered cyclosporine alone or in combination with drugs known to inhibit its metabolism. Dose and whole blood cyclosporine Css(tough) observations measured using the enzyme-multiplied immunoassay technique (EMIT) (396 observations) or the TDx assay (435 observations) were collected as part of routine blood concentration monitoring from 182 patients who underwent cardiothoracic transplantation. Data were analyzed using a linear mixed-effects modeling approach to examine the effect of metabolic inhibitors on dose-rate-Css(trough) ratio. The mean (and 95% confidence interval) dose-rate-Css(trough) ratio for cyclosporine generated from concentrations measured using EMIT was 94 (82.5-105.5) Lh(-1) for patients administered cyclosporine alone, 66.7 (58.1-75.3) Lh(-1) for patients administered concomitant diltiazem, 47.9 (15.4 -80.4) Lh(-1) for patients administered concomitant itraconazole, 21.7 (14.8-28.5) Lh(-1) for patients administered concomitant ketoconazole, and 14.9 (11.8-18.1) Lh(-1) for patients concomitantly administered diltiazem and ketoconazole. For patients administered concomitant cyclosporine, ketoconazole, and diltiazem, the dosage of cyclosporine, if it is administered alone, should be 20% to achieve the same blood concentrations. This will allow safer drug concentration targeting of cyclosporine after cardiothoracic transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a P-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 Angstrom N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba(67,95)]HIVPR and [Lys(7),Ile(33),Aba(67,95)]- HIVPR used in this work were shown to have very similar crystal structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. Results: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 Angstrom. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. Conclusions: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New amino acids are reported in which component macrocycles are constrained to mimic tripeptides locked in a beta-strand conformation. The novel amino acids involve macrocycles functionalized with both an N- and a C-terminus enabling addition of appendages at either end to modify receptor affinity, selectivity, or membrane permeability. We show that the cycles herein are effective templates within inhibitors of HIV-1 protease. Eleven compounds originating from such bifunctionalized cyclic templates are potent inhibitors of HIV-1 protease (Ki 0.3-50 nM; pH 6.5, I = 0.1 M). Unlike normal peptides comprising amino acids, five of these macrocycle-containing compounds are potent antiviral agents with sub-micromolar potencies (IC50 170-900 nM) against HIV-1 replication in human MT2 cells. The most active antiviral agents are the most lipophilic, with calculated values of LogD(6.5) greater than or equal to 4. All molecules have a conformationally constrained 17-membered macrocyclic ring that has been shown to structurally mimic a tripeptide segment (Xaa)-(Val/Ile)-(Phe/Tyr) of a peptide substrate in the extended conformation. The presence of two trans amide bonds and a para-substituted aromatic ring prevents intramolecular hydrogen bonds and fixes the macrocycle in the extended conformation. Similarly constrained macrocycles may be useful templates for the creation of inhibitors for the many other proteins and proteases that recognize peptide beta-strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chymase is contained in the secretory granules of mast cells. In addition to the synthesis of angiotensin II, chymase is involved in transforming growth factor-beta activation and cleaves Type I procollagen to produce collagen. NK301 and BCEAB are orally-active inhibitors of chymase. NK301 was tested in a dog model of vascular intimal hyperplasia after balloon injury and shown to reduce the increased chymase activity in the injured arteries and prevent intimal thickening. In a hamster model of cardiac fibrosis associated with cardiomyopathy, BCEAB reduced the increased cardiac chymase activity in cardiomyopathy and reduced fibrosis. Chymase inhibitors may be an important development for the treatment of cardiovascular injury associated with mast cell degranulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-I, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 mu M. Their activities against HIV-1 protease (K-i 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC50 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC50 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 Angstrom (1) and 1.85 Angstrom (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few reported inhibitors of secretory phospholipase A(2) enzymes inhibit the IIa human isoform (hnpsPLA(2)-IIa) noncovalently at submicromolar concentrations. Herein, the simple chiral precursor D-tyrosine was derivastised to give a series of potent new inhibitors of hnpsPLA(2)-IIa. A 2.2-Angstrom crystal structure shows an inhibitor bound in the active site of the enzyme, chelated to a Ca2+ ion through carboxylate and amide oxygen atoms, H bonded through an amide NH group to His48, with multiple hydrophobic contacts and a T-shaped aromatic-group-His6 interaction. Antiinflammatory activity is also demonstrated for two compounds administered orally to rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human ( 14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 mu M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P < 0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P > 0.1). FK506 had no effect on contractile force (P = 0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P = 0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC epsilon compared to samples incubated without PKCe. 6 Endogenous cardiostimulants which activate G alpha q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of human phenylethanolamine N-methyltransferase (hPNMT) reveals a disulfide- linked dimer, despite the presence of reducing agent in the crystallisation conditions. By removing the reducing agent, hPNMT crystals grow more rapidly and at lower protein concentrations. However, it was unclear whether the disulfide bonds are only present in the crystal form or whether these affect enzyme activity. The solution oligomeric state of hPNMT was investigated using biochemical techniques and activity assays. We found that in the absence of reducing agent, hPNMT forms dimers in solution. Furthermore, the solution dimer of hPNMT incorporates disulfide bonds, since this form is sensitive to reducing agent. The C48A and C139A mutants of hPNMT, which are incapable of forming the disulfide bond observed in the crystal structure, have a decreased propensity to form dimer in solution. Those dimers that do form are also sensitive to reducing agent. Further, the C48A/C139A double mutant shows only monomeric behaviour. Both dimeric and monomeric hPNMT, as well as mutants have wildtype enzyme activity. These results show that a variety of disulfides, including those observed in the crystal structure, can form in solution. In addition, disulfide-linked dimers are as active as the monomeric enzyme indicating that the crystal structure of the protein is a valid target for inhibitor design. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.