99 resultados para Al-cu Alloys


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detailed microscopic examination using optical and electron microscopes suggests that Al4C3, often observed in the central regions of magnesium grains on polished sections, is a potent substrate for primary Mg. Calculations of the crystallographic relationships between magnesium and Al4C3 further support the experimental observations. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The as-cast three-dimensional morphologies of alpha-Al-15(Fe,Mn)(3)Si-2 and beta-Al5FeSi intermetallics were investigated by serial sectioning. Large beta-Al5FeSi intermetallics were observed to grow around pre-existing dendrite arms. The alpha-Al-15(Fe,Mn)(3)Si-2 intermetallic particle was observed to have a central polyhedral particle and an external highly convoluted three-dimensional structure. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model for the crystallography and morphology of diffusion-controlled phase transformations - edge-to-edge matching - has been used to predict the orientation relationships (OR) and habit planes of precipitates Mg17Al12 in Mg-Al alloy, Mg24Y5 in Mg-Y alloy and alpha-Mn in Mg-Mn alloy. Based on the crystal structures and lattice parameters only, the model predicts that the possible ORs between Mg17Al12 and Mg matrix are the near Burgers OR, the Potter OR, the Gjonnes-Ostmoe OR and the Crawley OR. In the Mg-Y alloy, the OR between Mg24Y5 precipitates and the Mg matrix is predicted to be the Burgers OR only. The model also predicts that there are no reproducible ORs between alpha-Mn and Mg in the Mg-Mn alloy. Combining the edge-to-edge matching model and W. Zhang's Deltag approach, the habit plane and side facets of the precipitate for each OR can be determined. All the predicted ORs and the corresponding habit planes in Mg-Al and Mg-Y alloys agree very well with the experimental results. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Grain size is one of the most important microstructural characteristics determining the mechanical properties and therefore the service performance of polycrystalline materials. Heterogeneous nucleation involves the addition or in situ formation of potent nuclei in the system to promote nucleation events, leading to a fine grain structure. This paper reports experimental results using graphite and SiC as potential grain refining agents to form in situ nuclei for Mg in Mg-Al alloys, and demonstrates the key role of Al4C3 in grain refilling this important alloy system. This insight will contribute to the design and development of the most cost effective, eco-friendly grain refining agents for Mg-Al alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is demonstrated that slow cooling to 200 degrees C from a high sintering temperature (620 degrees C) reduces porosity in an Al-8Zn-2.5Mg-1Cu powder compact when compared to isothermal sintering at the higher temperature for a longer time. The reduction in porosity is attributed to shrinkage associated with removal of solute from the aluminium solid solution and heterogeneous precipitation of the eta phase (MgZn2), particularly onto pore surfaces. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of commercial Al-Sr master alloys of differing Sr content and product form have been added to Al-7Si-0.5Mg casting alloy melts and held at constant temperature for periods up to 7 hours following the addition. The master alloys were added to achieve a specific Sr target level of 200 ppm, and the melts were held at various temperatures (most at 710ºC, but also 670, 690, 740 and 770ºC). A total of thirty six melt trials were conducted and during each trial chill-cast disc samples were taken throughout for subsequent chemical analysis. The Sr concentration versus time data of each trial has been considered in terms of Sr dissolution/recovery behaviour, as well as Sr loss/fade. Trends in the data are identified and discussed, and implications for industrial practices are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of the Al-Si eutectic is generally the final stage of the solidification process of Al-Si foundry alloys. This means that it can be expected to have a significant impact on the feeding of a casting, and consequently the formation of casting defects, in particular porosity. Understanding and controlling the eutectic solidification process are therefore very important. This paper reviews the recent advances and unique techniques used in improving our understanding of both eutectic nucleation and growth. The role of different modifiers in controlling the eutectic solidification mechanisms is presented and the relationship between eutectic solidification mechanisms and porosity formation is outlined. This new approach to aluminium foundry alloy metallurgy is likely to form the basis for further optimisation of alloy performance and master alloys for the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.