76 resultados para ADVANTAGES
Resumo:
Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective To determine whether one should aim for glycaemia that is statistically 'normal' or for levels of glycaemia low enough to prevent macrosomia (if such a threshold exists) when glucose intolerance is detected during pregnancy Design An audit of pregnancy outcomes in women with impaired glucose tolerance in pregnancy as compared to a local age-matched reference group with normal glucose tolerance. Results Our study suggests that for most patients, more intensive therapy would not have been justified. Maternal smoking appeared to convey some 'advantages' in terms of neonatal outcomes, with reduction in large-for-gestational-age (LGA) infants and jaundice in babies of impaired glucose tolerance (IGT) mothers. Conclusions These observations demonstrate the importance of considering risk factors other than GTT results in analysing pregnancy outcomes, while emphasising that 'normalisation' of fetal size should not be our only therapeutic endpoint. Our detailed outcome review allows us to reassure patients with GDM that with current treatment protocols, they should have every expectation of a positive pregnancy outcome.
Resumo:
Circular proteins are a recently discovered phenomenon. They presumably evolved to confer advantages over ancestral linear proteins while maintaining the intrinsic biological functions of those proteins. In general, these advantages include a reduced sensitivity to proteolytic cleavage and enhanced stability. In one remarkable family of circular proteins, the cyclotides, the cyclic backbone is additionally braced by a knotted arrangement of disulfide bonds that confers additional stability and topological complexity upon the family. This article describes the discovery, structure, function and biosynthesis of the currently known circular proteins. The discovery of naturally occurring circular proteins in the past few years has been complemented by new chemical and biochemical methods to make synthetic circular proteins; these are also briefly described.
Resumo:
Our groups have had a long-term interest in utilizing bacterial systems in the characterization of bioactivation and detoxication reactions catalyzed by cytochrome P450 (P450) and glutathione transferase (GST) enzymes. Bacterial systems remain the first choice for initial screens with new chemicals and have advantages, including high-throughput capability. Most human P450s of interest in toxicology have been readily expressed in Escherichia coli with only minor sequence modification. These enzymes can be readily purified and used in assays of activation of chemicals. Bicistronic systems have been developed in order to provide the auxiliary NADPH-P450 reductase. Alternative systems involve these enzymes expressed together within bacteria. In one approach, a lac selection system is used with E. coli and has been applied to the characterization of inhibitors of P450s 1A2 and 1131, as well as in basic studies involving random mutagenesis. Another approach utilizes induction of the SOS (umu) response in Salmonella typhimurium, and systems have now been developed with human P450s 1A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4, which have been used to report responses from heterocyclic amines. S. typhimurium his reporter systems have also been used with GSTs, first to demonstrate the role of rat GST 5-5 in the activation of dihalomethanes. These systems have been used to compare these GSTs with regard to activation of dihaloalkanes and potential toxicity. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
One of the most important advantages of database systems is that the underlying mathematics is rich enough to specify very complex operations with a small number of statements in the database language. This research covers an aspect of biological informatics that is the marriage of information technology and biology, involving the study of real-world phenomena using virtual plants derived from L-systems simulation. L-systems were introduced by Aristid Lindenmayer as a mathematical model of multicellular organisms. Not much consideration has been given to the problem of persistent storage for these simulations. Current procedures for querying data generated by L-systems for scientific experiments, simulations and measurements are also inadequate. To address these problems the research in this paper presents a generic process for data-modeling tools (L-DBM) between L-systems and database systems. This paper shows how L-system productions can be generically and automatically represented in database schemas and how a database can be populated from the L-system strings. This paper further describes the idea of pre-computing recursive structures in the data into derived attributes using compiler generation. A method to allow a correspondence between biologists' terms and compiler-generated terms in a biologist computing environment is supplied. Once the L-DBM gets any specific L-systems productions and its declarations, it can generate the specific schema for both simple correspondence terminology and also complex recursive structure data attributes and relationships.
Resumo:
Viewed on a hydrodynamic scale, flames in experiments are often thin so that they may be described as gasdynamic discontinuities separating the dense cold fresh mixture from the light hot burned products. The original model of a flame as a gasdynamic discontinuity was due to Darrieus and to Landau. In addition to the fluid dynamical equations, the model consists of a flame speed relation describing the evolution of the discontinuity surface, and jump conditions across the surface which relate the fluid variables on the two sides of the surface. The Darrieus-Landau model predicts, in contrast to observations, that a uniformly propagating planar flame is absolutely unstable and that the strength of the instability grows with increasing perturbation wavenumber so that there is no high-wavenumber cutoff of the instability. The model was modified by Markstein to exhibit a high-wavenumber cutoff if a phenomenological constant in the model has an appropriate sign. Both models are postulated, rather than derived from first principles, and both ignore the flame structure, which depends on chemical kinetics and transport processes within the flame. At present, there are two models which have been derived, rather than postulated, and which are valid in two non-overlapping regions of parameter space. Sivashinsky derived a generalization of the Darrieus-Landau model which is valid for Lewis numbers (ratio of thermal diffusivity to mass diffusivity of the deficient reaction component) bounded away from unity. Matalon & Matkowsky derived a model valid for Lewis numbers close to unity. Each model has its own advantages and disadvantages. Under appropriate conditions the Matalon-Matkowsky model exhibits a high-wavenumber cutoff of the Darrieus-Landau instability. However, since the Lewis numbers considered lie too close to unity, the Matalon-Matkowsky model does not capture the pulsating instability. The Sivashinsky model does capture the pulsating instability, but does not exhibit its high-wavenumber cutoff. In this paper, we derive a model consisting of a new flame speed relation and new jump conditions, which is valid for arbitrary Lewis numbers. It captures the pulsating instability and exhibits the high-wavenumber cutoff of all instabilities. The flame speed relation includes the effect of short wavelengths, not previously considered, which leads to stabilizing transverse surface diffusion terms.
Resumo:
A new modeling approach-multiple mapping conditioning (MMC)-is introduced to treat mixing and reaction in turbulent flows. The model combines the advantages of the probability density function and the conditional moment closure methods and is based on a certain generalization of the mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The validity of the closuring hypothesis of the model is demonstrated by a comparison with direct numerical simulation results for the three-stream mixing problem. (C) 2003 American Institute of Physics.
Resumo:
Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.
Resumo:
For ground penetrating radar (GPR), smaller antennas would provide considerable practical advantages. Some of which are: portability; ease of use; and higher spatial sampling. A theoretical comparison of the fundamental limits of a small electric field antenna and a small magnetic field antenna shows that the minimum Q constraints are identical. Furthermore, it is shown that only the small magnetic loop antenna can be constructed to approach, arbitrarily closely, the fundamental minimum Q limit. This is achieved with the addition of a high permeability material which reduces energy stored in the magnetic fields. This is of special interest to some GPR applications. For example, applications requiring synthetic aperture data collection would benefit from the increased spatial sampling offered by electrically smaller antennas. Low frequency applications may also benefit, in terms of reduced antenna dimensions, by the use of electrically small antennas. Under these circumstances, a magnetic type antenna should be considered in preference to the typical electric field antenna. Numerical modeling data supports this assertion.
Resumo:
Linkage disequilibrium (LD) mapping is commonly used as a fine mapping tool in human genome mapping and has been used with some success for initial disease gene isolation in certain isolated inbred human populations. An understanding of the population history of domestic dog breeds suggests that LID mapping could be routinely utilized in this species for initial genome-wide scans. Such an approach offers significant advantages over traditional linkage analysis. Here, we demonstrate, using canine copper toxicosis in the Bedlington terrier as the model, that LID mapping could be reasonably expected to be a useful strategy in low-resolution, genome-wide scans in pure-bred dogs. Significant LID was demonstrated over distances up to 33.3 cM. It is very unlikely, for a number of reasons discussed, that this result could be extrapolated to the rest of the genome. It is, however, consistent with the expectation given the population structure of canine breeds and, in this breed at least, with the hypothesis that it may be possible to utilize LID in a genome-wide scan. In this study, LD mapping confirmed the location of the copper toxicosis in Bedlington terrier gene (CT-BT) and was able to do so in a population that was refractory to traditional linkage analysis.
Resumo:
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
For dynamic closed loop control of a multilevel converter with a low pulse number (ratio of switching frequency to synthesized fundamental), natural sampled pulse-width modulation (PWM) is the best form of modulation. Natural sampling does not introduce distortion or a delayed response to the modulating signal. However previous natural sampled PWM implementations have generally been analog. For a modular multilevel converter, a digital implementation has advantages of accuracy and flexibility. Re-sampled uniform PWM is a novel digital modulation technique which approaches the performance of natural PWM. Both hardware and software implementations for a five level multilevel converter phase are presented, demonstrating the improvement over uniform PWM.