126 resultados para 779905 Integrated (ecosystem) assessment and management
Mapping olive varieties and within-field spatial variability using high resolution quickbird imagery
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring environmental health indicators. The objective of this work was to evaluate IKONOS and Landsat-7 ETM+ imagery for mapping riparian vegetation health indicators in tropical savannas for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from IKONOS data were used for estimating percentage canopy cover (r2=0.86). Pan-sharpened IKONOS data were used to map riparian species composition (overall accuracy=55%) and riparian zone width (accuracy within 4 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones, which may be used as riparian environmental health indicators
Resumo:
Ecological regions are increasingly used as a spatial unit for planning and environmental management. It is important to define these regions in a scientifically defensible way to justify any decisions made on the basis that they are representative of broad environmental assets. The paper describes a methodology and tool to identify cohesive bioregions. The methodology applies an elicitation process to obtain geographical descriptions for bioregions, each of these is transformed into a Normal density estimate on environmental variables within that region. This prior information is balanced with data classification of environmental datasets using a Bayesian statistical modelling approach to objectively map ecological regions. The method is called model-based clustering as it fits a Normal mixture model to the clusters associated with regions, and it addresses issues of uncertainty in environmental datasets due to overlapping clusters.